2095: [Poi2010]Bridges

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 604  Solved: 218
[Submit][Status][Discuss]

Description

YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛可以到另外任意一个小岛。现在YYD想骑单车从小岛1出发,骑过每一座桥,到达每一个小岛,然后回到小岛1。霸中同学为了让YYD减肥成功,召唤了大风,由于是海上,风变得十分大,经过每一座桥都有不可避免的风阻碍YYD,YYD十分ddt,于是用泡芙贿赂了你,希望你能帮他找出一条承受的最大风力最小的路线。

Input

输入:第一行为两个用空格隔开的整数n(2<=n<=1000),m(1<=m<=2000),接下来读入m行由空格隔开的4个整数a,b(1<=a,b<=n,a<>b),c,d(1<=c,d<=1000),表示第i+1行第i座桥连接小岛a和b,从a到b承受的风力为c,从b到a承受的风力为d。

Output

输出:如果无法完成减肥计划,则输出NIE,否则第一行输出承受风力的最大值(要使它最小)

Sample Input

4 4
1 2 2 4
2 3 3 4
3 4 4 4
4 1 5 4

Sample Output

4

HINT

注意:通过桥为欧拉回路

Source

by poi

Solution

最大风力最小,典型的二分,那么二分风力,作为最大风力即可

混合图欧拉回路,第一次见,大体上就是:

欧拉回路是图G中的一个回路,经过每条边有且仅一次,称该回路为欧拉回路。具有欧拉回路的图称为欧拉图,简称E图。

无向图中存在欧拉回路的条件:每个点的度数均为偶数。

有向图中存在欧拉回路的条件:每个点的入度 = 出度。

混合图就是一个含有有向边和无向边的图,混合图判欧拉回路时用的是最大流,原理及证明?我也不是很晓得...

下面是大体的模型:

  把该图的无向边随便定向,计算每个点的入度和出度。如果有某个点出入度之差为奇数,那么肯定不存在欧拉回路。因为欧拉回路要求每点入度 = 出度,也就是总度数为偶数,存在奇数度点必不能有欧拉回路。 
  好了,现在每个点入度和出度之差均为偶数。那么将这个偶数除以2,得x。也就是说,对于每一个点,只要将x条边改变方向(入>出就是变入,出>入就是变出),就能保证出 = 入。如果每个点都是出 = 入,那么很明显,该图就存在欧拉回路。 
  现在的问题就变成了:我该改变哪些边,可以让每个点出 = 入?构造网络流模型。首先,有向边是不能改变方向的,要之无用,删。一开始不是把无向边定向了吗?定的是什么向,就把网络构建成什么样,边长容量上限1。另新建s和t。对于入 > 出的点u,连接边(u, t)、容量为x,对于出 > 入的点v,连接边(s, v),容量为x(注意对不同的点x不同)。之后,察看是否有满流的分配。有就是能有欧拉回路,没有就是没有。欧拉回路是哪个?察看流值分配,将所有流量非 0(上限是1,流值不是0就是1)的边反向,就能得到每点入度 = 出度的欧拉图。 
  由于是满流,所以每个入 > 出的点,都有x条边进来,将这些进来的边反向,OK,入 = 出了。对于出 > 入的点亦然。那么,没和s、t连接的点怎么办?和s连接的条件是出 > 入,和t连接的条件是入 > 出,那么这个既没和s也没和t连接的点,自然早在开始就已经满足入 = 出了。那么在网络流过程中,这些点属于“中间点”。我们知道中间点流量不允许有累积的,这样,进去多少就出来多少,反向之后,自然仍保持平衡。 
  所以,就这样,混合图欧拉回路问题,解了。

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 2010
#define maxm 1000100
int n,m,minwind,maxwind,l,r,tot;
struct Bridgenode{int a,b,c,d;}bridge[maxn];
struct Edgenode{int to,next,cap;}edge[maxm];
int head[maxn],cnt=;
void add(int u,int v,int w)
{cnt++;edge[cnt].to=v;edge[cnt].cap=w;edge[cnt].next=head[u];head[u]=cnt;}
void insert(int u,int v,int w)
{add(u,v,w);add(v,u,);}
//
#define inf 0x7fffffff
int dis[maxn],cur[maxn],S,T,q[maxn<<],du[maxn];
bool bfs()
{
for (int i=S; i<=T; i++) dis[i]=-;
q[]=S; dis[S]=; int he=,ta=;
while (he<ta)
{
int now=q[he++];
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==-)
dis[edge[i].to]=dis[now]+,q[ta++]=edge[i].to;
}
return dis[T]!=-;
}
int dfs(int loc,int low)
{
if (loc==T) return low;
int w,used=;
for (int i=cur[loc]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==dis[loc]+)
{
w=dfs(edge[i].to,min(low-used,edge[i].cap));
edge[i].cap-=w; edge[i^].cap+=w;
used+=w; if (edge[i].cap) cur[loc]=i;
if (used==low) return low;
}
if (!used) dis[loc]=-;
return used;
}
int dinic()
{
int tmp=;
for (int i=; i<=n; i++) if (du[i]&) return -;
while (bfs())
{
for (int i=S; i<=T; i++) cur[i]=head[i];
tmp+=dfs(S,inf);
}
return tmp;
}
//
inline void make(int x)
{
S=,T=n+;
memset(head,,sizeof(head)); cnt=;
memset(du,,sizeof(du)); tot=;
for (int i=; i<=m; i++)
{
if(bridge[i].c<=x) du[bridge[i].a]--,du[bridge[i].b]++;
if(bridge[i].d<=x) insert(bridge[i].b,bridge[i].a,);
}
for (int i=; i<=n; i++)
if (du[i]>) tot+=du[i]/,insert(S,i,du[i]/);
else insert(i,T,-du[i]/);
}
int main()
{
n=read(),m=read(); minwind=inf; maxwind=-inf;
for (int a,b,c,d,i=; i<=m; i++)
{
a=read(),b=read(),c=read(),d=read();
if (c>d) swap(a,b),swap(c,d);
bridge[i].a=a,bridge[i].b=b,bridge[i].c=c,bridge[i].d=d;
minwind=min(c,minwind); maxwind=max(d,maxwind);
}
l=minwind; r=maxwind;
while (l<=r)
{
int mid=(l+r)>>;
make(mid);
int maxflow=dinic();
if (maxflow==tot) r=mid-;
else l=mid+;
}
if (l==maxwind+) {puts("NIE");return ;}
printf("%d\n",l);
return ;
}

好厉害的东西QAQ...以前只听说过,没见过QAQ...

【BZOJ-2095】Bridge 最大流 + 混合图欧拉回路 + 二分的更多相关文章

  1. POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]

    嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...

  2. POJ 1637 Sightseeing tour(混合图欧拉回路+最大流)

    http://poj.org/problem?id=1637 题意:给出n个点和m条边,这些边有些是单向边,有些是双向边,判断是否能构成欧拉回路. 思路: 构成有向图欧拉回路的要求是入度=出度,无向图 ...

  3. POJ 1637 Sightseeing tour ★混合图欧拉回路

    [题目大意]混合图欧拉回路(1 <= N <= 200, 1 <= M <= 1000) [建模方法] 把该图的无向边随便定向,计算每个点的入度和出度.如果有某个点出入度之差为 ...

  4. POJ 1637 混合图欧拉回路

    先来复习一下混合图欧拉回路:给定一张含有单向边和双向边的图,使得每一点的入度出度相同. 首先对于有向边来说,它能贡献的入度出度是确定的,我们不予考虑.对于无向图,它可以通过改变方向来改变两端点的出入度 ...

  5. poj1637Sightseeing tour(混合图欧拉回路)

    题目请戳这里 题目大意:求混合图欧拉回路. 题目分析:最大流.竟然用网络流求混合图的欧拉回路,涨姿势了啊啊.. 其实仔细一想也是那么回事.欧拉回路是遍历所有边一次又回到起点的回路.双向图只要每个点度数 ...

  6. poj1637 Sightseeing tour(混合图欧拉回路)

    题目链接 题意 给出一个混合图(有无向边,也有有向边),问能否通过确定无向边的方向,使得该图形成欧拉回路. 思路 这是一道混合图欧拉回路的模板题. 一张图要满足有欧拉回路,必须满足每个点的度数为偶数. ...

  7. 混合图欧拉回路POJ1637Sightseeing tour

    http://www.cnblogs.com/looker_acm/archive/2010/08/15/1799919.html /* ** 混合图欧拉回路 ** 只记录各定点的出度与入度之差,有向 ...

  8. Sightseeing tour 【混合图欧拉回路】

    题目链接:http://poj.org/problem?id=1637 Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total ...

  9. [POJ1637]Sightseeing tour:混合图欧拉回路

    分析 混合图欧拉回路问题. 一个有向图有欧拉回路当且仅当图连通并且对于每个点,入度\(=\)出度. 入度和出度相等可以联想到(我也不知道是怎么联想到的)网络流除了源汇点均满足入流\(=\)出流.于是可 ...

随机推荐

  1. PL/SQL Transaction Control

    PL/SQL 基础 ( 下 )   1. PL/SQL中的 SQL语句 - END语句与COMMIT等内容,没有任何关系. - PL/SQL does not directly support dat ...

  2. [转]❲阮一峰❳Linux 守护进程的启动方法

    ❲阮一峰❳Linux 守护进程的启动方法 "守护进程"(daemon)就是一直在后台运行的进程(daemon). 本文介绍如何将一个 Web 应用,启动为守护进程. 一.问题的由来 ...

  3. 目录结构-内置(AJAX)帮助文档

    Discuz common.js 内置(AJAX)函数帮助文档 作者:cr180 / 整理日期:1970-01-01 / 个人站点:www.cr180.com / Discuz超级管家 showMen ...

  4. Git开发备忘

    1.在Git中,上传了中文命名的文件,但是后面想删除的时候,发现中文命名被转义了. 利用Git add是无法添加这类文件的,所以这里我们需要用到 git add -u命令,即可实现成功添加. 2.在G ...

  5. Chrome扩展开发之二——Chrome扩展中脚本的运行机制和通信方式

    目录: 0.Chrome扩展开发(Gmail附件管理助手)系列之〇——概述 1.Chrome扩展开发之一——Chrome扩展的文件结构 2.Chrome扩展开发之二——Chrome扩展中脚本的运行机制 ...

  6. Google搜索的几个使用技巧——让你的搜索结果更准确

    对于软件开发人员来说,不知道的内容在网上搜索是再正常不过的了.今天同事在组内分享了几个谷歌搜索的使用技巧,在此自己总结一下,希望可以帮到更多人. 在此之前先要唠叨几句,什么时候用百度,什么时候用谷歌? ...

  7. Tensorflow学习笔记1:Get Started

    关于Tensorflow的基本介绍 Tensorflow是一个基于图的计算系统,其主要应用于机器学习. 从Tensorflow名字的字面意思可以拆分成两部分来理解:Tensor+flow. Tenso ...

  8. JavaScript 10分钟入门

    JavaScript 10分钟入门 随着公司内部技术分享(JS进阶)投票的失利,先译一篇不错的JS入门博文,方便不太了解JS的童鞋快速学习和掌握这门神奇的语言. 以下为译文,原文地址:http://w ...

  9. Linux之我见

    Linux哲学之美 linux就像是一个哲学的最佳实践.如果非要对它评价,我真的不知道该怎么赞叹,我只能自豪的说着:“linux的美丽简直让人沉醉.” 我只能说是我处在linux学习的修炼之路上的一个 ...

  10. 20140207 - Java and Mac OS X Retina

    在Mac下使用文件管理工具类似Total Commander的muCommander,muCommander的编写语言是Java,打开后发现Java不兼容Mac Retina. muCommander ...