[问题2015S14]  设 \(J=\begin{pmatrix} 0 & I_n \\ -I_n & 0 \\ \end{pmatrix}\), \(A\) 为 \(2n\) 阶实矩阵, 满足 \(AJA'=J\), 证明: \(\det(A)=1\).

提示  \(\det(A)=\pm 1\) 是显然的, 设法计算 \(AJ+JA\) 的行列式, 再证明 \(\det(A)>0\) 即可.

问题解答请在以下网址下载:http://pan.baidu.com/share/home?uk=103502710#category/type=0

[问题2015S14] 复旦高等代数 II(14级)每周一题(第十五教学周)的更多相关文章

  1. [问题2015S04] 复旦高等代数 II(14级)每周一题(第五教学周)

    [问题2015S04] 设 \(A\) 为 \(n\) 阶方阵, \(C\) 为 \(k\times n\) 矩阵, 且对任意的 \(\lambda\in\mathbb{C}\), \(\begin{ ...

  2. [问题2014S05] 复旦高等代数II(13级)每周一题(第五教学周)

    [问题2014S05]  设 \(A,B\) 分别是 \(4\times 3\) 和 \(3\times 4\) 实矩阵, \[ BA=\begin{pmatrix}-9 & -20 & ...

  3. [问题2014A03] 复旦高等代数 I(14级)每周一题(第五教学周)

    [问题2014A03]  设 \(A=(a_{ij})\) 为 \(n\,(n\geq 3)\) 阶方阵,\(A_{ij}\) 为第 \((i,j)\) 元素 \(a_{ij}\) 在 \(|A|\) ...

  4. [问题2015S02] 复旦高等代数 II(14级)每周一题(第三教学周)

    [问题2015S02]  设 \(a,b,c\) 为复数且 \(bc\neq 0\), 证明下列 \(n\) 阶方阵 \(A\) 可对角化: \[A=\begin{pmatrix} a & b ...

  5. [问题2015S03] 复旦高等代数 II(14级)每周一题(第四教学周)

    [问题2015S03]  设 \(g(x)=x^n+a_1x^{n-1}+\cdots+a_{n-1}x+a_n\) 是数域 \(\mathbb{K}\) 上的多项式, \(V\) 是 \(\math ...

  6. [问题2015S05] 复旦高等代数 II(14级)每周一题(第六教学周)

    [问题2015S05]  设 \(A\) 是 \(n\) 阶复方阵, 证明: \(A\) 可对角化的充分必要条件是 \(A\) 相似于某个如下的循环矩阵: \[C=\begin{pmatrix} a_ ...

  7. [问题2015S06] 复旦高等代数 II(14级)每周一题(第七教学周)

    [问题2015S06]  设 \(V\) 是数域 \(\mathbb{K}\) 上的 \(n\) 维线性空间, \(\varphi\) 是 \(V\) 上的线性变换. (1) 求证: 对任一非零向量 ...

  8. [问题2015S07] 复旦高等代数 II(14级)每周一题(第八教学周)

    [问题2015S07]  设 \(A\) 为 \(n\) 阶复方阵, 证明: 存在 \(n\) 阶非异复对称阵 \(S\), 使得 \(A'=S^{-1}AS\), 即 \(A\) 可通过非异复对称阵 ...

  9. [问题2015S10] 复旦高等代数 II(14级)每周一题(第十一教学周)

    [问题2015S10]  设 \(A\) 为 \(n\) 阶实方阵, 证明: 存在 \(n\) 阶非异实对称阵 \(R\), 使得 \(A'=R^{-1}AR\), 即 \(A\) 可通过非异实对称阵 ...

随机推荐

  1. 自动解析URL

    function parseURL(url) { var a = document.createElement('a'); a.href = url; return { source: url, pr ...

  2. ASP.NET MVC中在Action获取提交的表单数据方法总结 (4种方法,转载备忘)

    有Index视图如下: 视图代码如下: <%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Mas ...

  3. find a multiple

    Description The input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). Each of ...

  4. Linux内核总结

    1.文件系统就是数据的存储结构,不要以为你的硬盘存储东西理所当然,没有文件系统,你存的只是0010101101100 2.内存管理是计算机运行时内存的分配和使用. 3.进程管理就是说每次执行一个程序都 ...

  5. 50分钟学会Laravel 50个小技巧

    50分钟学会Laravel 50个小技巧 时间 2015-12-09 17:13:45  Yuansir-web菜鸟 原文  http://www.yuansir-web.com/2015/12/09 ...

  6. NGUI 渲染流程深入研究 (UIDrawCall UIGeometry UIPanel UIWidget)

    上图是一个简要的NGUI的图形工作流程,UIGeometry被UIWidget实例化之后,通过UIWidget的子类,也就是UISprit,UILabel等,在OnFill()函数里算出所需的Geom ...

  7. 阿里云专有网络与弹性公网IP

    阿里云服务器经典网络和专有网络究竟有什么区别? 在用户提交订单购买阿里云ECS云服务器时,会面临怎样选择网络类型的烦恼,阿里云服务器定制购买时,网络类型里的经典网络和专有网络(VPC)是什么含义,该怎 ...

  8. 分时间uu

    #include<stdio.h> int map[20][4]; typedef struct node{  int star;  int end; }node; node dui[10 ...

  9. 初步了解JSONP

    一.JSON 与 JSONP JSON是一种基于文本的数据交换方式(数据描述格式),JSONP是一种非官方跨域数据交互协议. ajax的核心是通过XmlHttpRequest获取非本页内容,而json ...

  10. hive函数参考手册

    hive函数参考手册 原文见:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF 1.内置运算符1.1关系运算符 运 ...