和无向图的连通分量类似,有向图有“强连通分量”的说法。“相互可达”的关系在有向图中也是等价关系。每一个集合称为有向图的一个强连通分量(scc)。如果把一个集合看成一个点,那么所有的scc构成了一个scc图。这个scc图不会存在任何有向环,因此是一个DAG。求解有向图强连通分量的算法一般都是基于dfs的,常用的算法有Kosaraju算法和Tarjan算法,下面给出Tarjan算法的代码:

 vector<int> G[maxn];
int pre[maxn], low_link[maxn], scc_no[maxn], dfs_clk, scc_cnt;
stack<int> S;
void dfs(int u){
pre[u] = low_link[u] = ++dfs_clk;
S.push(u);
FOR(i, , G[u].size() - ){
int v = G[u][i];
if(!pre[v]){
dfs(v);
minimize(low_link[u], low_link[v]);
}else if(!scc_no[v]) minimize(low_link[u], pre[v]);
}
if(low_link[u] == pre[u]){
scc_cnt++;
while(true){
int x = S.top(); S.pop();
scc_no[x] = scc_cnt;
if(x == u) break;
}
}
}
void find_scc(int n){
dfs_clk = scc_cnt = ;
clr(scc_no, ), clr(pre, );
FOR(i, , n - ) if(!pre[i]) dfs(i);
}

由于每个点恰属于一个scc,因此我们希望在第一次访问某scc的结点并完成时就将该scc输出。所有需要判断某个点是否是其所在scc中最先被发现的点。与计算无向图bcc方法类似,对于每个结点$u$用$lowlink(u)$表示$u$及其后代能够追溯到最早的祖先点$v$的$pre(v)$的值。因此$u$是第一个被发现的点当且仅当$lowlink(u) =pre(u)$。

图论$\cdot$强连通分量的更多相关文章

  1. 【转】有向图强连通分量的Tarjan算法

    原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...

  2. HDU5934 强连通分量

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5934 根据距离关系建边 对于强连通分量来说,只需引爆话费最小的炸弹即可引爆整个强连通分量 将所有的强连通分 ...

  3. POJ1236Network of Schools[强连通分量|缩点]

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16571   Accepted: 65 ...

  4. 有向图的强连通分量的求解算法Tarjan

    Tarjan算法 Tarjan算法是基于dfs算法,每一个强连通分量为搜索树中的一颗子树.搜索时,把当前搜索树中的未处理的结点加入一个栈中,回溯时可以判断栈顶到栈中的结点是不是在同一个强连通分量中.当 ...

  5. Tarjan算法--强连通分量

    tarjan的过程就是dfs过程. 图一般能画成树,树的边有三种类型,树枝边 + 横叉边(两点没有父子关系) + 后向边(两点之间有父子关系): 可以看到只有后向边能构成环,即只有第三张图是强连通分量 ...

  6. 强连通分量的一二三 | | JZOJ【P1232】 | | 我也不知道我写的什么

    贴题: 在幻想乡,上白泽慧音是以知识渊博闻名的老师.春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄.因此慧音决定换一个能够聚集最多人数的村庄作为新的教学地点.人间之 ...

  7. 有向图强连通分量的Tarjan算法

    有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...

  8. poj2186Popular Cows(Kosaraju算法--有向图的强连通分量的分解)

    /* 题目大意:有N个cows, M个关系 a->b 表示 a认为b popular:如果还有b->c, 那么就会有a->c 问最终有多少个cows被其他所有cows认为是popul ...

  9. Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)【转】【修改】

    一.基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成 ...

  10. POJ 1236 Network of Schools(强连通分量/Tarjan缩点)

    传送门 Description A number of schools are connected to a computer network. Agreements have been develo ...

随机推荐

  1. IE中的CSS3不完全兼容方案

    摘要: Internet Explorer,其本身也是足够强大的.IE特有的技术可以很好的实现一些CSS3的效果. 到Internet Explorer 8为止,IE系列是不支持CSS3的.在IE中要 ...

  2. OSI七层&TCP&IP协议

    OSI七层: OSI七层与ICP/IP概念层的对应: ICP/IP概念层上的网络设备: IP(Internet Protocol网际协议):计算机之间的通信 IP(网络协议)位于网络层,作用是把各种数 ...

  3. tomcat重启session不过期的处理

    tomcat关闭后重启,SESSION 仍然有效的处理方法很多时候明明在服务器上关闭了TOMCAT,但是客户端的表示 SESSION仍然在线,原因及解决方案如下: 每当正常关闭或者重启tomcat服务 ...

  4. cms修改栏目单页样式错位调整

    if (dt.Rows[0]["ClassTemplet"].ToString().Trim() == "") { rows_key.Style.Value = ...

  5. 【SIGGRAPH】用【有说服力的照片真实】技术实现最终幻想15的视觉特效

    原文:西川善司 http://www.4gamer.net/games/075/G007535/20160726064/   最终幻想15的演讲会场.相当大,听众非常多.      在本次计算机图形和 ...

  6. 基于TCP/IP的长连接和短连接

    1. TCP连接 当网络通信时采用TCP协议时,在真正的读写操作之前,server与client之间必须建立一个连接,当读写操作完成后,双方不再需要这个连接时它们可以释放这个连接,连接的建立是需要三次 ...

  7. jQuery 怎么判断DIV出现在可视区域

    直接上代码: $(window).scroll(function () { var oT = document.getElementById("myDiv").offsetTop; ...

  8. git pull时出现unable to unlink old 一个不该犯下的错误

    在日常开发中,当团队内有人将新的代码打成jar文件提交,并且未改名的时候,可能会出现这样的错误"error: unable to unlink old 'Test/lib/xxx-1.0.0 ...

  9. Kafka组件监控

    Kafka web console http://blog.csdn.net/hengyunabc/article/details/40431627 KafkaOffsetMonitor http:/ ...

  10. 土壤湿度传感器YL69使用

    1.电源:3.3V ~ 5V 2.获取湿度信息的方式(2种可同时使用): 从传感器的D0引脚:土壤湿度大于某个阈值,则D0输出0,否则输出1 从传感器的A0引脚:获取到模拟量,更加精确.土壤湿度越大, ...