本篇对于Python操作MySQL主要使用两种方式:

  • 原生模块 pymsql
  • ORM框架 SQLAchemy

pymsql

pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同。

下载安装

1
pip3 install pymysql

使用操作

1、执行SQL

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
# 创建连接
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
# 创建游标
cursor = conn.cursor()
  
# 执行SQL,并返回收影响行数
effect_row = cursor.execute("update hosts set host = '1.1.1.2'")
  
# 执行SQL,并返回受影响行数
#effect_row = cursor.execute("update hosts set host = '1.1.1.2' where nid > %s", (1,))
  
# 执行SQL,并返回受影响行数
#effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
  
  
# 提交,不然无法保存新建或者修改的数据
conn.commit()
  
# 关闭游标
cursor.close()
# 关闭连接
conn.close()

2、获取新创建数据自增ID

1
2
3
4
5
6
7
8
9
10
11
12
13
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
cursor = conn.cursor()
cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
conn.commit()
cursor.close()
conn.close()
  
# 获取最新自增ID
new_id = cursor.lastrowid

3、获取查询数据

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
cursor = conn.cursor()
cursor.execute("select * from hosts")
  
# 获取第一行数据
row_1 = cursor.fetchone()
  
# 获取前n行数据
# row_2 = cursor.fetchmany(3)
# 获取所有数据
# row_3 = cursor.fetchall()
  
conn.commit()
cursor.close()
conn.close()

注:在fetch数据时按照顺序进行,可以使用cursor.scroll(num,mode)来移动游标位置,如:

  • cursor.scroll(1,mode='relative')  # 相对当前位置移动
  • cursor.scroll(2,mode='absolute') # 相对绝对位置移动

4、fetch数据类型

  关于默认获取的数据是元祖类型,如果想要或者字典类型的数据,即:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
  
# 游标设置为字典类型
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
r = cursor.execute("call p1()")
  
result = cursor.fetchone()
  
conn.commit()
cursor.close()
conn.close()

SQLAchemy

SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。

安装:

1
pip3 install SQLAlchemy

SQLAlchemy本身无法操作数据库,其必须以来pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:

1
2
3
4
5
6
7
8
9
10
11
12
13
MySQL-Python
    mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
   
pymysql
    mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
   
MySQL-Connector
    mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
   
cx_Oracle
    oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
   
更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html

一、内部处理

使用 Engine/ConnectionPooling/Dialect 进行数据库操作,Engine使用ConnectionPooling连接数据库,然后再通过Dialect执行SQL语句。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy import create_engine
  
  
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)
  
# 执行SQL
# cur = engine.execute(
#     "INSERT INTO hosts (host, color_id) VALUES ('1.1.1.22', 3)"
# )
  
# 新插入行自增ID
# cur.lastrowid
  
# 执行SQL
# cur = engine.execute(
#     "INSERT INTO hosts (host, color_id) VALUES(%s, %s)",[('1.1.1.22', 3),('1.1.1.221', 3),]
# )
  
  
# 执行SQL
# cur = engine.execute(
#     "INSERT INTO hosts (host, color_id) VALUES (%(host)s, %(color_id)s)",
#     host='1.1.1.99', color_id=3
# )
  
# 执行SQL
# cur = engine.execute('select * from hosts')
# 获取第一行数据
# cur.fetchone()
# 获取第n行数据
# cur.fetchmany(3)
# 获取所有数据
# cur.fetchall()

二、ORM功能使用

使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。

1、创建表

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import ColumnInteger, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
 
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)
 
Base = declarative_base()
 
# 创建单表
class Users(Base):
    __tablename__ = 'users'
    id = Column(Integer, primary_key=True)
    name Column(String(32))
    extra = Column(String(16))
 
    __table_args__ = (
    UniqueConstraint('id''name'name='uix_id_name'),
        Index('ix_id_name''name''extra'),
    )
 
 
# 一对多
class Favor(Base):
    __tablename__ = 'favor'
    nid = Column(Integer, primary_key=True)
    caption = Column(String(50), default='red'unique=True)
 
 
class Person(Base):
    __tablename__ = 'person'
    nid = Column(Integer, primary_key=True)
    name Column(String(32), index=True, nullable=True)
    favor_id = Column(Integer, ForeignKey("favor.nid"))
 
 
# 多对多
class Group(Base):
    __tablename__ = 'group'
    id = Column(Integer, primary_key=True)
    name Column(String(64), unique=True, nullable=False)
    port = Column(Integerdefault=22)
 
 
class Server(Base):
    __tablename__ = 'server'
 
    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)
 
 
class ServerToGroup(Base):
    __tablename__ = 'servertogroup'
    nid = Column(Integer, primary_key=True, autoincrement=True)
    server_id = Column(Integer, ForeignKey('server.id'))
    group_id = Column(Integer, ForeignKey('group.id'))
 
 
def init_db():
    Base.metadata.create_all(engine)
 
 
def drop_db():
    Base.metadata.drop_all(engine)

注:设置外检的另一种方式 ForeignKeyConstraint(['other_id'], ['othertable.other_id'])

2、操作表

#!/usr/bin/env python
# -*- coding:utf- -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=) Base = declarative_base() # 创建单表
class Users(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String())
extra = Column(String()) __table_args__ = (
UniqueConstraint('id', 'name', name='uix_id_name'),
Index('ix_id_name', 'name', 'extra'),
) def __repr__(self):
return "%s-%s" %(self.id, self.name) # 一对多
class Favor(Base):
__tablename__ = 'favor'
nid = Column(Integer, primary_key=True)
caption = Column(String(), default='red', unique=True) def __repr__(self):
return "%s-%s" %(self.nid, self.caption) class Person(Base):
__tablename__ = 'person'
nid = Column(Integer, primary_key=True)
name = Column(String(), index=True, nullable=True)
favor_id = Column(Integer, ForeignKey("favor.nid"))
# 与生成表结构无关,仅用于查询方便
favor = relationship("Favor", backref='pers') # 多对多
class ServerToGroup(Base):
__tablename__ = 'servertogroup'
nid = Column(Integer, primary_key=True, autoincrement=True)
server_id = Column(Integer, ForeignKey('server.id'))
group_id = Column(Integer, ForeignKey('group.id'))
group = relationship("Group", backref='s2g')
server = relationship("Server", backref='s2g') class Group(Base):
__tablename__ = 'group'
id = Column(Integer, primary_key=True)
name = Column(String(), unique=True, nullable=False)
port = Column(Integer, default=)
# group = relationship('Group',secondary=ServerToGroup,backref='host_list') class Server(Base):
__tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True)
hostname = Column(String(), unique=True, nullable=False) def init_db():
Base.metadata.create_all(engine) def drop_db():
Base.metadata.drop_all(engine) Session = sessionmaker(bind=engine)
session = Session()

表结构 + 数据库连接

obj = Users(name="alex0", extra='sb')
session.add(obj)
session.add_all([
Users(name="alex1", extra='sb'),
Users(name="alex2", extra='sb'),
])
session.commit()

session.query(Users).filter(Users.id > 2).delete()
session.commit()

session.query(Users).filter(Users.id > 2).update({"name" : ""})
session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + ""}, synchronize_session=False)
session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate")
session.commit()

ret = session.query(Users).all()
ret = session.query(Users.name, Users.extra).all()
ret = session.query(Users).filter_by(name='alex').all()
ret = session.query(Users).filter_by(name='alex').first() ret = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(User.id).all() ret = session.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name='ed').all()

# 条件
ret = session.query(Users).filter_by(name='alex').all()
ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all()
from sqlalchemy import and_, or_
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all()
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all()
ret = session.query(Users).filter(
or_(
Users.id < 2,
and_(Users.name == 'eric', Users.id > 3),
Users.extra != ""
)).all() # 通配符
ret = session.query(Users).filter(Users.name.like('e%')).all()
ret = session.query(Users).filter(~Users.name.like('e%')).all() # 限制
ret = session.query(Users)[1:2] # 排序
ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all() # 分组
from sqlalchemy.sql import func ret = session.query(Users).group_by(Users.extra).all()
ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).all() ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all() # 连表 ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all() ret = session.query(Person).join(Favor).all() ret = session.query(Person).join(Favor, isouter=True).all() # 组合
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all() q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all()

其他

更多功能参见文档,猛击这里下载PDF

MySQL(Python+ORM)的更多相关文章

  1. 自己动手实现智能家居之树莓派GPIO简介(Python版)

    [前言] 一个热爱技术的人一定向往有一个科技感十足的环境吧,那何不亲自实践一下属于技术人的座右铭:“技术改变世界”. 就让我们一步步动手搭建一个属于自己的“智能家居平台”吧(不要对这个名词抬杠啦,技术 ...

  2. Mysql(超级详细)

    Mysql(超级详细) (黑小子-余) 一.Mysql介绍 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,属于 Oracle 旗下产品.MySQL 是最流行的关系型数据库管理 ...

  3. 服务器端开发(Python/C++)-今日头条-拉勾网-最专业的互联网招聘平台

    服务器端开发(Python/C++)-今日头条-拉勾网-最专业的互联网招聘平台 服务器端开发(Python/C++)

  4. 编码的秘密(python版)

    编码(python版) 最近在学习python的过程中,被不同的编码搞得有点晕,于是看了前人的留下的文档,加上自己的理解,准备写下来,分享给正在为编码苦苦了挣扎的你. 编码的概念 编码就是将信息从一种 ...

  5. Autoit 实现word拆分页解析 (python同理)

    Autoit 实现word拆分页解析 (python同理) 背景 之前一直在做相关工作,由于没有找到解决最佳解决方案,老办法思路是 python先将word 转成pdf,按照页码 提取文字,从而实现w ...

  6. 华为云的API调用实践(python版本)

    一.结论: 1.华为云是符合openstack 社区的API,所以,以社区的API为准.社区API见下面的链接. https://developer.openstack.org/api-ref/net ...

  7. [指南] 15分钟学会MySQL(Linux版)

    原文链接:http://www.mysqlpub.com/thread-348-1-1.html 原创出处:MySQLpub.com  , 作者:kider  ,转载请注明作者和出处,并不能用于商业用 ...

  8. DES的加密与解密算法(Python实现)

    DES的加密与解密算法(Python实现) 密码学实验:实现了DES的简单的加密和解密算法,DES算法的相关资料网上很多,这里不再赘述,仅仅贴出源代码给大家分享,源码中包含很多汉字注释,相信大家都是可 ...

  9. H2O中的随机森林算法介绍及其项目实战(python实现)

    H2O中的随机森林算法介绍及其项目实战(python实现) 包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator ...

随机推荐

  1. bootstrap4.0

    1.CDN库引用: <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4 ...

  2. cf549B Looksery Party 贪心

    题目大意:有n个员工,每个员工通讯录里有自己的号码和其他一些员工的号码.现在有若干员工参加一个聚会,他们会给自己通讯录里所有的人发一条短信,包括自己.现在有个人预测了每个员工会收到多少条短信,而你要寻 ...

  3. [Ynoi2019模拟赛]Yuno loves sqrt technology III

    题目大意: 给你一个长为n的序列a,m次询问,每次查询一个区间的众数的出现次数,强制在线. 解题思路: 出题人题解 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 首先得离散化. 分块后,预处理Fi, ...

  4. [WC2006]水管局长

    原题链接 前言 搞不懂为什么要写LCT,搞不懂为什么要加强数据.像这道题是用父亲表示法来做的.虽然复杂度不是log,但是现在下面这份代码却是无论从空间,还是代码量,还是时间都是优秀不止一点. 而且这样 ...

  5. Python每日练习汇总

    练习1 2019-3-19# 写一个函数实现99乘法表 def x99(x): if x >=1 and x <=9: line = 1 while line <= x: start ...

  6. 解决MOFH免费空间cpanel面板大文件无法解压的情况

    解决办法: 解压大文件,重新压缩为tar格式的压缩格式,这样可以更小,而且也可以在cpanel面板解压,记得使用filezilla软件上传文件,在cpanel的网页界面不要刷新,一刷新就不可以解压大文 ...

  7. redis key命令

    key命令主要用于管理redis中的key del key //删除key, 不存在的key会忽略 dump key //序列化key,不存在的key返回nil exists key //判断key是 ...

  8. 集成direnv 与docker-compose 进行环境变量管理

    direnv 是一个不错的换将变量管理工具,同时日常的开发测试中我们使用docker-compose 会比较多,一般我们的玩法是 可以再docker-compose 中指定环境变量,可以通过envir ...

  9. direnv 一个强大的环境变量管理工具

      direnv 是一个基于golang 编写的强大的环境变量管理工具,可以帮助我们简化环境变量管理,而且 支持的平台比较多. 基本使用 下载二进制软件包 https://github.com/dir ...

  10. 脚本添加crontab任务

    #!/bin/bash export LANG=en_US.utf8 cur_dir=$(cd ``;pwd) job_cmd_info="\n# 每天凌晨5点运行定时删除工具\n" ...