基于TensorFlow的MNIST数据集的实验
一、MNIST实验内容
MNIST的实验比较简单,可以直接通过下面的程序加上程序上的部分注释就能很好的理解了,后面在完善具体的相关的数学理论知识,先记录在这里:
代码如下所示:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import matplotlib.pyplot as plt
import numpy as np %matplotlib inline mnist = input_data.read_data_sets('/home/ubuntu-mm/TensorFlow/Learning/MNIST_data', one_hot=True) #下载MINIST数据集 #表示输入任意数量的MNIST图像,每一张图展平成784维的向量
#placeholder是占位符,在训练时指定
x = tf.placeholder(tf.float32, [None, 784]) #初始化W,b矩阵
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10])) #tf.matmul(X,W)表示x乘以W
y = tf.nn.softmax(tf.matmul(x, W) + b) #为了计算交叉熵,我们首先需要添加一个新的占位符用于输入正确值
y_ = tf.placeholder("float", [None,10]) #交叉熵损失函数
cross_entropy = -tf.reduce_sum(y_*tf.log(y)) #模型的训练,不断的降低成本函数
#要求TensorFlow用梯度下降算法(gradient descent algorithm)以0.01的学习速率最小化交叉熵
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) #在运行计算之前,需要添加一个操作来初始化我们创建的变量
init = tf.global_variables_initializer() #在Session里面启动我模型,并且初始化变量
with tf.Session() as sess:
# sess = tf.Session()
# sess.run(init)
sess.run(init)
#开始训练模型,循环训练1000次
for i in range(50):
#随机抓取训练数据中的100个批处理数据点
batch_xs, batch_ys = mnist.train.next_batch(100)
#然后我们用这些数据点作为参数替换之前的占位符来运行train_step
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
#检验真实标签与预测标签是否一致
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
#计算精确度,将true和false转化成相应的浮点数,求和取平均
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
#计算所学习到的模型在测试数据集上面的正确率
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
print 'W is:',W.eval()[10]
print 'b is:',b.eval()
batch_xs, batch_ys = mnist.train.next_batch(100)
# print 'batch_xs[1]=',batch_xs[1]
print 'batch_ys[1]=',batch_ys[1]
x_in = tf.reshape(batch_xs[1],[1,784])
Y_Predict = tf.nn.softmax(tf.matmul(x_in, W) + b)
print 'Y_Predict is :',Y_Predict.eval()
Ori_Pic = np.zeros([28,28])
for m in range(784):
i = m%28
j = (m-i)/28
Ori_Pic[j][i] = batch_xs[1][m]
plt.figure(1)
plt.imshow(Ori_Pic)
实验运行的结果如下所示:
由结果显示的可知:图片对应为6的概率是99.56%
二、交叉熵损失函数的基本原理:
基于TensorFlow的MNIST数据集的实验的更多相关文章
- 基于 tensorflow 的 mnist 数据集预测
1. tensorflow 基本使用方法 2. mnist 数据集简介与预处理 3. 聚类算法模型 4. 使用卷积神经网络进行特征生成 5. 训练网络模型生成结果 how to install ten ...
- 基于TensorFlow的MNIST手写数字识别-初级
一:MNIST数据集 下载地址 MNIST是一个包含很多手写数字图片的数据集,一共4个二进制压缩文件 分别是test set images,test set labels,training se ...
- 一个简单的TensorFlow可视化MNIST数据集识别程序
下面是TensorFlow可视化MNIST数据集识别程序,可视化内容是,TensorFlow计算图,表(loss, 直方图, 标准差(stddev)) # -*- coding: utf-8 -*- ...
- 基于tensorflow的MNIST手写数字识别(二)--入门篇
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...
- Caffe系列4——基于Caffe的MNIST数据集训练与测试(手把手教你使用Lenet识别手写字体)
基于Caffe的MNIST数据集训练与测试 原创:转载请注明https://www.cnblogs.com/xiaoboge/p/10688926.html 摘要 在前面的博文中,我详细介绍了Caf ...
- 深度学习原理与框架-Tensorflow基本操作-mnist数据集的逻辑回归 1.tf.matmul(点乘操作) 2.tf.equal(对应位置是否相等) 3.tf.cast(将布尔类型转换为数值类型) 4.tf.argmax(返回最大值的索引) 5.tf.nn.softmax(计算softmax概率值) 6.tf.train.GradientDescentOptimizer(损失值梯度下降器)
1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参 ...
- TensorFlow 训练MNIST数据集(2)—— 多层神经网络
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码 ...
- TensorFlow训练MNIST数据集(1) —— softmax 单层神经网络
1.MNIST数据集简介 首先通过下面两行代码获取到TensorFlow内置的MNIST数据集: from tensorflow.examples.tutorials.mnist import inp ...
- 基于tensorflow实现mnist手写识别 (多层神经网络)
标题党其实也不多,一个输入层,三个隐藏层,一个输出层 老样子先上代码 导入mnist的路径很长,现在还记不住 import tensorflow as tf import tensorflow.exa ...
随机推荐
- response.setContentType()的String参数及对应类型
response.addHeader("Content-Disposition", "attachment;filename="+ filename); res ...
- 如果Android真的收费了,你怎么看?
前言 今天突然看到一群里有人发了下面这样一张图片,然后群里又炸了! 于是又和同事讨论了android收费的问题,然后隔壁正在玩农药的UI妹子就笑了... 没错! 安卓可能要收费了!安卓可能要收费了 ...
- bzoj 1812
什么鬼noip互测题... 这题很显然是树形dp,但设计状态以及转移是个难点 记状态f[i][j][k]表示以i为根节点的子树,离i最近的祖宗节点编号为j放了虫洞(伐木场?),i的子树内放了k个伐木场 ...
- HTML中body元素的属性
body元素的属性 属性 描述 text 设定页面文字颜色 bgcolor 设定页面背景颜色 background 设定页面背景图像 bgproperties 设定页面的背景图像为固定状态(不随页面的 ...
- 使用powerdesigner导入sql脚本,生成物理模型
有些时候我们的powerdesigner以jdbc的形式链接本地数据库可能会失败,这时候我觉得从sql文件中生成物理模型是个很不错的方法 1.打开powerdesigner,文件->->r ...
- 步步为营101-同一个PCode下重复的OrderNumber重新排序
USE [K2_WorkFlow_Test] GO /****** Object: StoredProcedure [dbo].[sp_UpdateBPM_DictionaryForOrderNumb ...
- 20165328 学习基础和C语言基础调查
一.技能学习经验: 1.你有什么技能比大多数人(超过90%以上)更好: 我算是一个普通人,没什么特别的才能,如果硬要说有什么技能比其他人较好的话,我想大概是快速阅读的能力吧,我能以很快的速度 ...
- java.lang.NoClassDefFoundError: javax/servlet/AsyncListener解决方案
问题:spring3.2的架构在tomcat6.0中无法正常启动,抛出java.lang.NoClassDefFoundError: javax/servlet/AsyncListener错误 原因: ...
- 字定义JSON序列化支持datetime格式序列化
字定义JSON序列化支持datetime格式序列化 由于json.dumps无法处理datetime日期,所以可以通过自定义处理器来做扩展,如: import json from datetime i ...
- Idea设置行注释不显示在行首
如图:idea使用ctrl+/注释时候,//都在行首,强迫症表示受不了 解决方法如图