深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)(转)
转自: https://zhuanlan.zhihu.com/p/22252270 ycszen
另可参考: https://blog.csdn.net/llx1990rl/article/details/44001921
深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)
前言
(标题不能再中二了)本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了。
SGD
此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不细说了。现在的SGD一般都指mini-batch gradient descent。
SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了。即:
其中,是学习率,是梯度 SGD完全依赖于当前batch的梯度,所以可理解为允许当前batch的梯度多大程度影响参数更新
缺点:(正因为有这些缺点才让这么多大神发展出了后续的各种算法)
- 选择合适的learning rate比较困难 - 对所有的参数更新使用同样的learning rate。对于稀疏数据或者特征,有时我们可能想更新快一些对于不经常出现的特征,对于常出现的特征更新慢一些,这时候SGD就不太能满足要求了
- SGD容易收敛到局部最优,并且在某些情况下可能被困在鞍点【原来写的是“容易困于鞍点”,经查阅论文发现,其实在合适的初始化和step size的情况下,鞍点的影响并没这么大。感谢@冰橙的指正】
Momentum
momentum是模拟物理里动量的概念,积累之前的动量来替代真正的梯度。公式如下:
其中,是动量因子
特点:
- 下降初期时,使用上一次参数更新,下降方向一致,乘上较大的能够进行很好的加速
- 下降中后期时,在局部最小值来回震荡的时候,,使得更新幅度增大,跳出陷阱
- 在梯度改变方向的时候,能够减少更新 总而言之,momentum项能够在相关方向加速SGD,抑制振荡,从而加快收敛
Nesterov
nesterov项在梯度更新时做一个校正,避免前进太快,同时提高灵敏度。 将上一节中的公式展开可得:
可以看出,并没有直接改变当前梯度,所以Nesterov的改进就是让之前的动量直接影响当前的动量。即:
所以,加上nesterov项后,梯度在大的跳跃后,进行计算对当前梯度进行校正。如下图:
momentum首先计算一个梯度(短的蓝色向量),然后在加速更新梯度的方向进行一个大的跳跃(长的蓝色向量),nesterov项首先在之前加速的梯度方向进行一个大的跳跃(棕色向量),计算梯度然后进行校正(绿色梯向量)
其实,momentum项和nesterov项都是为了使梯度更新更加灵活,对不同情况有针对性。但是,人工设置一些学习率总还是有些生硬,接下来介绍几种自适应学习率的方法
Adagrad
Adagrad其实是对学习率进行了一个约束。即:
此处,对从1到进行一个递推形成一个约束项regularizer,,用来保证分母非0
特点:
- 前期较小的时候, regularizer较大,能够放大梯度
- 后期较大的时候,regularizer较小,能够约束梯度
- 适合处理稀疏梯度
缺点:
- 由公式可以看出,仍依赖于人工设置一个全局学习率
- 设置过大的话,会使regularizer过于敏感,对梯度的调节太大
- 中后期,分母上梯度平方的累加将会越来越大,使,使得训练提前结束
Adadelta
Adadelta是对Adagrad的扩展,最初方案依然是对学习率进行自适应约束,但是进行了计算上的简化。 Adagrad会累加之前所有的梯度平方,而Adadelta只累加固定大小的项,并且也不直接存储这些项,仅仅是近似计算对应的平均值。即:
在此处Adadelta其实还是依赖于全局学习率的,但是作者做了一定处理,经过近似牛顿迭代法之后:
其中,代表求期望。
此时,可以看出Adadelta已经不用依赖于全局学习率了。
特点:
- 训练初中期,加速效果不错,很快
- 训练后期,反复在局部最小值附近抖动
RMSprop
RMSprop可以算作Adadelta的一个特例:
当时,就变为了求梯度平方和的平均数。
如果再求根的话,就变成了RMS(均方根):
此时,这个RMS就可以作为学习率的一个约束:
特点:
- 其实RMSprop依然依赖于全局学习率
- RMSprop算是Adagrad的一种发展,和Adadelta的变体,效果趋于二者之间
- 适合处理非平稳目标 - 对于RNN效果很好
Adam
Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。公式如下:
其中,,分别是对梯度的一阶矩估计和二阶矩估计,可以看作对期望,的估计;,是对,的校正,这样可以近似为对期望的无偏估计。 可以看出,直接对梯度的矩估计对内存没有额外的要求,而且可以根据梯度进行动态调整,而对学习率形成一个动态约束,而且有明确的范围。
特点:
- 结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点
- 对内存需求较小
- 为不同的参数计算不同的自适应学习率
- 也适用于大多非凸优化 - 适用于大数据集和高维空间
Adamax
Adamax是Adam的一种变体,此方法对学习率的上限提供了一个更简单的范围。公式上的变化如下:
可以看出,Adamax学习率的边界范围更简单
Nadam
Nadam类似于带有Nesterov动量项的Adam。公式如下:
可以看出,Nadam对学习率有了更强的约束,同时对梯度的更新也有更直接的影响。一般而言,在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果。
经验之谈
- 对于稀疏数据,尽量使用学习率可自适应的优化方法,不用手动调节,而且最好采用默认值
- SGD通常训练时间更长,但是在好的初始化和学习率调度方案的情况下,结果更可靠
- 如果在意更快的收敛,并且需要训练较深较复杂的网络时,推荐使用学习率自适应的优化方法。
- Adadelta,RMSprop,Adam是比较相近的算法,在相似的情况下表现差不多。
- 在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果
最后展示两张可厉害的图,一切尽在图中啊,上面的都没啥用了... ...
损失平面等高线
在鞍点处的比较
转载须全文转载且注明作者和原文链接,否则保留维权权利
引用
[1]Adagrad
[3]Adadelta
[4]Adam
[5]Nadam
[6]On the importance of initialization and momentum in deep learning
[8]Alec Radford(图)
[9]An overview of gradient descent optimization algorithms
深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)(转)的更多相关文章
- [深度学习] 最全优化方法总结比较--SGD,Adagrad,Adadelta,Adam,Adamax,Nadam
SGD 此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 min ...
- 深度学习最全优化方法总结比较及在tensorflow实现
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u010899985/article/d ...
- 深度学习(九) 深度学习最全优化方法总结比较(SGD,Momentum,Nesterov Momentum,Adagrad,Adadelta,RMSprop,Adam)
前言 这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x(权重),使得f(x)的值最小. 本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理. SGD SGD指stoc ...
- 深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)
深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 ...
- 深度学习面试题03:改进版梯度下降法Adagrad、RMSprop、Momentum、Adam
目录 Adagrad法 RMSprop法 Momentum法 Adam法 参考资料 发展历史 标准梯度下降法的缺陷 如果学习率选的不恰当会出现以上情况 因此有一些自动调学习率的方法.一般来说,随着迭代 ...
- 深度学习必备:随机梯度下降(SGD)优化算法及可视化
补充在前:实际上在我使用LSTM为流量基线建模时候,发现有效的激活函数是elu.relu.linear.prelu.leaky_relu.softplus,对应的梯度算法是adam.mom.rmspr ...
- 深度学习之卷积神经网络(CNN)详解与代码实现(一)
卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...
- 【深度学习】关于Adam
版权声明:本文为博主原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/weixin_31866177/articl ...
- 【转载】 深度学习之卷积神经网络(CNN)详解与代码实现(一)
原文地址: https://www.cnblogs.com/further-further-further/p/10430073.html ------------------------------ ...
随机推荐
- (二 -4) 天猫精灵接入Home Assistant-自动发现Mqtt设备--传感器系列
https://www.home-assistant.io/blog/2015/10/11/measure-temperature-with-esp8266-and-report-to-mqtt/ 最 ...
- linux安装mysql5.7.19
0.查看操作系统内核版本 cat /proc/version [admin@octopus-att-d-030098 ~]$ cat /proc/versionLinux version 3.10.0 ...
- JAVA Exception
博客背景音乐设置 晴天博客(酷)
- (admin.E108) The value of 'list_display[4]'报错解决方案
参考资料:虫师-<web接口开发与自动化测试:基于python语言> 日常学习Django框架中,创建了用户模型,但是页面功能验证时候,提示不能进行列表字段操作,debug好久,才找到问题 ...
- java单例模式总结
目录 一. 饿汉模式(静态初始化) 二.双重检查锁(dcl) 三. 延迟占位类 四.枚举实现 最后 常见安全的单例实现代码和自己的一点理解. 一. 饿汉模式(静态初始化) class Singleto ...
- Apache Spark 内存管理详解(转载)
Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色.理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优.本文旨在梳理出 ...
- Nginx学习之如何搭建文件防盗链服务
前言 大家都知道现在很多站点下载资料都是要收费的,无论是积分还是金币,想免费只能说很少很少了,那么这些网站是如何做到资源防盗链的呢? 这里推荐一款比较容易上手的神器,Nginx本身提供了secure_ ...
- mybatis源码- 反射模块一(跟着MyBatis学反射):类级别信息的封装
目录 1 JavaBean 规范 2 Reflector和ReflectorFactory 2.1 Reflector 属性 2.1.1 属性 2.1.2 Invoker 接口 2.2 Reflect ...
- 【LeetCode-数组篇】 1 Two Sum
1 前言 之所以开始刷 LeetCode 上的算法题,一是快面临秋招,第二点是因为提升自己的编程能力,坚持两个月,希望博友们监督. 这个系列打算用 C# 和 Java 编程,为什么用两门语言,因为经历 ...
- 跨域访问-需要设置HTTP响应标头
前提:服务端网站的配置(被请求的网站) 1.需要在IIS服务器站点的功能视图中设置HTTP响应标头: 2.双击“HTTP响应标头”进入设置界面 3.点击右侧添加按钮弹出窗口 4.填入需要设置的信息 名 ...