最长递增子序列(lis)最长公共子序列(lcs) 最长公共上升子序列(lics)
lis:最长递增子序列
复杂度:$O(nlgn)$
#include<iostream>
#include<cstdio>
using namespace std;
int num[],lis[],res=;
int solve(int x)
{
int a=,b=res;
while(a!=b)
{
int mid=(a+b)/;
if(lis[mid]>=x)
b=mid;
else
a=mid+;
}
return a;
}
int main()
{
int n;
cin>>n;
for(int i=;i<=n;i++)
scanf("%d",&num[i]);
for(int i=;i<=n;i++)
{
if(lis[res]<=num[i])
res++,lis[res]=num[i];
else
lis[solve(num[i])]=num[i];
}
cout<<res<<endl;
return ;
}
lcs:最长公共子序列
复杂度$n\times m$
#include <cstdio>
#include <iostream>
using namespace std;
int dp[][];
int main()
{
string a,b;
while(cin>>a>>b)
{
for(int i=;i<=a.size();i++)
for(int j=;j<=b.size();j++)
{
if(a[i-]==b[j-])dp[i][j]=dp[i-][j-]+;
else dp[i][j]=max(dp[i-][j],dp[i][j-]);
} char path[];
for(int aa=a.size(),bb=b.size(),num=;aa>=&&bb>=;)
{
if(a[aa-]==b[bb-])
{
path[num++]=a[aa-];
aa--,bb--;
}
else
{
if(dp[aa-][bb]>dp[aa][bb-])
aa--;
else bb--;
}
}
cout<<dp[a.size()][b.size()]<<endl;
for(int i=dp[a.size()][b.size()];i>=;i--)
cout<<path[i]<<" ";
cout<<endl;
}
return ;
}
lics: 最长公共上升子序列
复杂度$n\times m$
#include<iostream>
#include<string>
#include<cstring>
#include<cstdio>
using namespace std;
const int maxn=;
int n,m,num1[maxn],num2[maxn],f[maxn];
int lics()
{
for(int i=;i<=m;i++)f[i]=;
int res=;
for(int i=;i<=n;i++)
{
int k=;
for(int j=;j<=m;j++)
{
if(num1[i]==num2[j])
f[j]=max(f[j],k+); if(num2[j]<num1[i])
{
k=max(f[j],k);
}
res=max(res,f[j]);
}
}
return res;
}
int main()
{
int T;
cin>>T;
for(int i=;i<=T;i++)
{
cin>>n;
for(int j=;j<=n;j++)
scanf("%d",&num1[j]);
cin>>m;
for(int j=;j<=m;j++)
scanf("%d",&num2[j]);
cout<<lics()<<endl;
if(i!=T)
puts("");
}
return ;
}
最长递增子序列(lis)最长公共子序列(lcs) 最长公共上升子序列(lics)的更多相关文章
- UVa 10534 Wavio Sequence (最长递增子序列 DP 二分)
Wavio Sequence Wavio is a sequence of integers. It has some interesting properties. · Wavio is of ...
- 51nod 1218 最长递增子序列 V2(dp + 思维)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1218 题解:先要确定这些点是不是属于最长递增序列然后再确定这 ...
- 最长公共子序列(LCS)和最长递增子序列(LIS)的求解
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
- 最长连续公共子序列(LCS)与最长递增公共子序列(LIS)
最长公共子序列(不连续) 实际问题中也有比较多的应用,比如,论文查重这种,就是很实际的一个使用方面. 这个应该是最常见的一种了,不再赘述,直接按照转移方程来进行: 按最普通的方式就是,直接构造二维矩阵 ...
- 最长公共子序列(LCS)、最长递增子序列(LIS)、最长递增公共子序列(LICS)
最长公共子序列(LCS) [问题] 求两字符序列的最长公共字符子序列 问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...
- 2.16 最长递增子序列 LIS
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...
- LIS 最长递增子序列
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...
- hunnu 11313 无重复元素序列的最长公共子序列转化成最长递增子序列 求法及证明
题目:http://acm.hunnu.edu.cn/online/?action=problem&type=show&id=11313 湖师大的比赛,见我的另一篇水题题解,这里要说的 ...
随机推荐
- Windows Server 2016-域站点复制查询
了解了有关站点复制概念性内容后,后续几章节我们会围绕站点复制相关内容对域控的日常复制.维护等进行简单介绍.本章为大家带来有关域控站点复制查询的相关内容,希望大家可以喜欢.站点内域控制器之间的复制拓扑由 ...
- 表单取消历史保存之autocomplete的用法
表单取消历史保存之autocomplete的用法 应用场景 浏览器开启了表单自动填充设置后,有些表单中的input元素在添加时会以下拉的形式显示以前填写过的表单,有时候可能会影响用户的使用.比如:da ...
- Unity Shader 基础(2) Image Effect
Unity中 Image Effect 是Post Processing的一种方,Unity自身也提供很多Effect效果供使用.Image Effect的使用官方文档做了很多介绍,这里重点Post ...
- C语言 求两数的最大公约数和最小公倍数
//作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ #include<stdio.h> //最大公约数 int gys(int x,int ...
- 【DB2基础】DB2编目和数据库连接
1.编目节点和编目数据库 编目(Catalog),是在本地或远程建立客户端到服务器的数据库连接的过程.其目的在于获取编目信息,即生成用来访问数据库的目录. 系统数据库目录包含一个列表和指针,通过目录可 ...
- animate()写无限循环
var css = {left:'500px'}; $('.arrow').animate(css,300,rowBack); function rowBack(){ if(css.left==='5 ...
- python获取数据网页数据并创建文件夹保存(基于python3.6)
from urllib.parse import urljoin import urllib.request from bs4 import BeautifulSoup import os impor ...
- java的回调
java的回调 1,明确什么是回调方法 2,采用接口来实现回调 java同步回调 一个类实现了接口,将他传递给另一个类,在另一个类调用接口中方法 public class Bar implements ...
- IRT模型的参数估计方法(EM算法和MCMC算法)
1.IRT模型概述 IRT(item response theory 项目反映理论)模型.IRT模型用来描述被试者能力和项目特性之间的关系.在现实生活中,由于被试者的能力不能通过可观测的数据进行描述, ...
- 解决不能再jupyter notebook中使用tensorflow
在搭建cuda + Anaconda + tensorflow的开发环境时,在虚拟环境中的jupyter notebook启动后无法导入tensorflow.具体解决方案如下: 1.首先在虚拟环境中安 ...