k=1:裸的快速幂
k=2:xy=z+kp,直接exgcd,这个可以不用解释了,不懂的同学可以看代码
k=3:裸的BSGS
重点是k=3(BSGS学习)
ax=b(mod p)求解这个同余方程
只能求gcd(a,p)=1的情况。
如何求解?很容易发现解一定位于{0,p-1}之间,设q=ceil(√p),然后x可以表示成cq-d
因为ax=b(mod p),所以acq=b*ad(mod p)
于是可以这样考虑:枚举d∈[1,q],将值插入哈希表,如有重复的则只记录最大的d,因为本题是求最小解,再枚举c=1...q,查询acq是否在哈希表内,如果在就可以直接跳出来。
注意要特判a或b等于0的情况就可以了。
不说太多了,直接上模板:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
map<int,int>hsh;
ll y,z,p;
ll qpow(ll a,ll b)
{
a%=p;
ll ret=;
while(b)
{
if(b&)ret=ret*a%p;
a=a*a%p,b>>=;
}
return ret;
}
ll exgcd(ll a,ll b,ll&x,ll&y)
{
if(b==){x=,y=;return a;}
ll ret=exgcd(b,a%b,y,x);y-=a/b*x;
return ret;
}
void solve2(ll a,ll b)
{
ll x,y,ans,d,s;
d=exgcd(a,p,x,y);
if(b%d){puts("Orz, I cannot find x!");return;}
ans=b/d*x;
s=p/d;
ans=(ans%s+s)%s;
printf("%lld\n",ans);
}
void solve3()
{
y%=p,z%=p;
if(!y)
{
if(!z)puts("");else puts("Orz, I cannot find x!");
return;
}
ll m=ceil(sqrt(p)),v=qpow(y,p-m-),e=,ret;
hsh.clear();
hsh[]=m+;
for(ll i=;i<=m;i++)
{
e=e*y%p;
if(!hsh[e])hsh[e]=i;
}
ret=-;
for(ll i=;i<m;i++)
{
if(hsh[z]){ret=i*m+(hsh[z]==m+?:hsh[z]);break;}
z=z*v%p;
}
if(ret==-)puts("Orz, I cannot find x!");
else printf("%d\n",ret);
}
int main()
{
int T,k;
scanf("%d%d",&T,&k);
while(T--)
{
scanf("%lld%lld%lld",&y,&z,&p);
if(k==)printf("%lld\n",qpow(y,z));
else if(k==)solve2(y,z);
else solve3();
}
}

[SDOI2011]计算器(exgcd&BSGS)的更多相关文章

  1. 【bzoj2242】[SDOI2011]计算器 EXgcd+BSGS

    题目描述 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给定y,z,p, ...

  2. BZOJ2242[SDOI2011]计算器——exgcd+BSGS

    题目描述 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给定y,z,p, ...

  3. BZOJ2242 [SDOI2011]计算器 【BSGS】

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 4741  Solved: 1796 [Submit][Sta ...

  4. BZOJ 2242 [SDOI2011]计算器 ——EXGCD/快速幂/BSGS

    三合一的题目. exgcd不解释,快速幂不解释. BSGS采用了一种不用写EXGCD的方法,写起来感觉好了很多. 比较坑,没给BSGS的样例(LAJI) #include <map> #i ...

  5. 【洛谷 P2485】 [SDOI2011]计算器 (BSGS)

    题目链接 第一问:快速幂 第二问:扩欧解线性同余方程 第三问:\(BSGS\) 三个模板 #include <cstdio> #include <cmath> #include ...

  6. 牛客20347 SDOI2011计算器(bsgs

    https://ac.nowcoder.com/acm/problem/20347 这篇是为了补bsgs(北上广深算法). 题意: 1.给定y,z,p,计算Y^Z Mod P 的值:  2.给定y,z ...

  7. [SDOI2011]计算器(BSGS)

    洛古题面 对于操作一,用快速幂算即可 代码如下 int quickpow(int a,int b,int k) { int r=1; while(b) { if(b&1) r=(r*a)%k; ...

  8. bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...

  9. BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS

    BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS 题意: 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p, ...

  10. 【BZOJ2242】[SDOI2011]计算器 BSGS

    [BZOJ2242][SDOI2011]计算器 Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ ...

随机推荐

  1. hive表链接

    等值连接 不等职链接 外部链接 没有包含在聚合函数(这里是count)中的列,都需要包含在group by函数中: 正确的外链接的写法,用的是右外链接: 自链接表 把同一张表 看成了2张表

  2. python之路--类与类之间的关系

    类和类之间的关系 在我们的世界中事物和事物之间总会有一些联系. 在面向对象中. 类和类之间也可以产生相关的关系 1. 依赖关系 执行某个动作的时候. 需要xxx来帮助你完成这个操作. 此时的关系是最轻 ...

  3. SpringMVC配置三大组件

    1.组件扫描器 使用组件扫描器省去在spring容器配置每个Controller类的繁琐. 使用<context:component-scan>自动扫描标记@Controller的控制器类 ...

  4. X5中CSS设置

    颜色渐变 position:absolute;left:0;top:40%; 效果图 点击导航按钮变化颜色 1.设置按钮class为 btn-link(超链接) 2.为每一个导航按钮增加属性id 3. ...

  5. vue自定義指令

    自定義指令可以允許代碼複用, 全局自定義指令 vue.directive('指令名',{鉤子函數:指令函數}) 局部自定義指令: vue({ directives:{指令名:{鉤子函數:指令函數} } ...

  6. Django框架中的Context使用

    Django框架中的Context使用 2017年11月09日 20:01:09 aweilark 阅读数:1113   转载自:http://www.aichengxu.com/python/606 ...

  7. [Codeforces261D]Maxim and Increasing Subsequence——树状数组+DP

    题目链接: Codeforces261D 题目大意:$k$次询问,每次给出一个长度为$n$的序列$b$及$b$中的最大值$maxb$,构造出序列$a$为$t$个序列$b$连接而成,求$a$的最长上升子 ...

  8. 第五十六 css选择器和盒模型

    1.组合选择器 群组选择器 #每个选择为可以位三种基础选择器任意一个,用逗号隔开,控制多个. div,#div,.div{ color:red } 后代(子代)选择器 .sup .sub{ 后代 } ...

  9. Codeforces Round #543 (Div. 2, based on Technocup 2019 Final Round)

    A. Technogoblet of Fire 题意:n个人分别属于m个不同的学校 每个学校的最强者能够选中 黑客要使 k个他选中的可以稳被选 所以就为这k个人伪造学校 问最小需要伪造多少个 思路:记 ...

  10. A - 敌兵布阵 HDU - 1166 线段树(多点修改当单点修改)

    线段树板子题练手用 #include<cstdio> using namespace std; ; int a[maxn],n; struct Node{ int l,r; long lo ...