k=1:裸的快速幂
k=2:xy=z+kp,直接exgcd,这个可以不用解释了,不懂的同学可以看代码
k=3:裸的BSGS
重点是k=3(BSGS学习)
ax=b(mod p)求解这个同余方程
只能求gcd(a,p)=1的情况。
如何求解?很容易发现解一定位于{0,p-1}之间,设q=ceil(√p),然后x可以表示成cq-d
因为ax=b(mod p),所以acq=b*ad(mod p)
于是可以这样考虑:枚举d∈[1,q],将值插入哈希表,如有重复的则只记录最大的d,因为本题是求最小解,再枚举c=1...q,查询acq是否在哈希表内,如果在就可以直接跳出来。
注意要特判a或b等于0的情况就可以了。
不说太多了,直接上模板:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
map<int,int>hsh;
ll y,z,p;
ll qpow(ll a,ll b)
{
a%=p;
ll ret=;
while(b)
{
if(b&)ret=ret*a%p;
a=a*a%p,b>>=;
}
return ret;
}
ll exgcd(ll a,ll b,ll&x,ll&y)
{
if(b==){x=,y=;return a;}
ll ret=exgcd(b,a%b,y,x);y-=a/b*x;
return ret;
}
void solve2(ll a,ll b)
{
ll x,y,ans,d,s;
d=exgcd(a,p,x,y);
if(b%d){puts("Orz, I cannot find x!");return;}
ans=b/d*x;
s=p/d;
ans=(ans%s+s)%s;
printf("%lld\n",ans);
}
void solve3()
{
y%=p,z%=p;
if(!y)
{
if(!z)puts("");else puts("Orz, I cannot find x!");
return;
}
ll m=ceil(sqrt(p)),v=qpow(y,p-m-),e=,ret;
hsh.clear();
hsh[]=m+;
for(ll i=;i<=m;i++)
{
e=e*y%p;
if(!hsh[e])hsh[e]=i;
}
ret=-;
for(ll i=;i<m;i++)
{
if(hsh[z]){ret=i*m+(hsh[z]==m+?:hsh[z]);break;}
z=z*v%p;
}
if(ret==-)puts("Orz, I cannot find x!");
else printf("%d\n",ret);
}
int main()
{
int T,k;
scanf("%d%d",&T,&k);
while(T--)
{
scanf("%lld%lld%lld",&y,&z,&p);
if(k==)printf("%lld\n",qpow(y,z));
else if(k==)solve2(y,z);
else solve3();
}
}

[SDOI2011]计算器(exgcd&BSGS)的更多相关文章

  1. 【bzoj2242】[SDOI2011]计算器 EXgcd+BSGS

    题目描述 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给定y,z,p, ...

  2. BZOJ2242[SDOI2011]计算器——exgcd+BSGS

    题目描述 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给定y,z,p, ...

  3. BZOJ2242 [SDOI2011]计算器 【BSGS】

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 4741  Solved: 1796 [Submit][Sta ...

  4. BZOJ 2242 [SDOI2011]计算器 ——EXGCD/快速幂/BSGS

    三合一的题目. exgcd不解释,快速幂不解释. BSGS采用了一种不用写EXGCD的方法,写起来感觉好了很多. 比较坑,没给BSGS的样例(LAJI) #include <map> #i ...

  5. 【洛谷 P2485】 [SDOI2011]计算器 (BSGS)

    题目链接 第一问:快速幂 第二问:扩欧解线性同余方程 第三问:\(BSGS\) 三个模板 #include <cstdio> #include <cmath> #include ...

  6. 牛客20347 SDOI2011计算器(bsgs

    https://ac.nowcoder.com/acm/problem/20347 这篇是为了补bsgs(北上广深算法). 题意: 1.给定y,z,p,计算Y^Z Mod P 的值:  2.给定y,z ...

  7. [SDOI2011]计算器(BSGS)

    洛古题面 对于操作一,用快速幂算即可 代码如下 int quickpow(int a,int b,int k) { int r=1; while(b) { if(b&1) r=(r*a)%k; ...

  8. bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...

  9. BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS

    BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS 题意: 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p, ...

  10. 【BZOJ2242】[SDOI2011]计算器 BSGS

    [BZOJ2242][SDOI2011]计算器 Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ ...

随机推荐

  1. 【转】Java基础——容器分类

    Java容器可以说是增强程序员编程能力的基本工具,本系列将带您深入理解容器类. 容器的用途 如果对象的数量与生命周期都是固定的,自然我们也就不需要很复杂的数据结构. 我们可以通过创建引用来持有对象,如 ...

  2. HashMap、HashTable、ConcurrentHashMap、HashSet区别 线程安全类

    HashMap专题:HashMap的实现原理--链表散列 HashTable专题:Hashtable数据存储结构-遍历规则,Hash类型的复杂度为啥都是O(1)-源码分析 Hash,Tree数据结构时 ...

  3. Codeforces#543 div2 A. Technogoblet of Fire(阅读理解)

    题目链接:http://codeforces.com/problemset/problem/1121/A 真·阅读理解 题意就是 有n个人 pi表示他们的强度 si表示他们来自哪个学校 现在Arkad ...

  4. 工厂类,配置文件,静态方法,反射构成编译器解耦;ioc的一个概念 ;通过xml创建容器里面存储对象

    工厂类,配置文件,静态,反射方法构成编译器解耦;ioc的一个概念

  5. JAVA-Web 百度编辑器,修改默认大小

    百度UEditor富文本编辑器-设置默认字体.字号.行间距及添加字体种类 如果这个还不能改变大小了,找一下在文件夹UEditor--css--中default.css文件,搜索出红色部分: grid_ ...

  6. ElasticSearch原理

    Elasticsearch-基础介绍及索引原理分析 最近在参与一个基于Elasticsearch作为底层数据框架提供大数据量(亿级)的实时统计查询的方案设计工作,花了些时间学习Elasticsearc ...

  7. 将自己的ubuntu18.04打包成镜像

    将自己的ubuntu18.04打包成镜像 2018年11月10日 10:40:06 舌耳 阅读数:1590 先下载remastersys wget ftp://ftp.gwdg.de/pub/linu ...

  8. HTML查漏补缺 【未完】

    1.命名锚 HTML 链接 - name 属性 name 属性规定锚(anchor)的名称. 您可以使用 name 属性创建 HTML 页面中的书签. 书签不会以任何特殊方式显示,它对读者是不可见的. ...

  9. CodeCraft-19 and Codeforces Round #537 Div. 2

    D:即有不超过52种物品,求容量为n/2的有序01背包方案数.容易想到设f[i][j]为前i种物品已用容量为j的方案数,有f[i][j]=f[i-1][j-a[i]]*C(n/2-j+a[i],a[i ...

  10. bzoj1559 [JSOI2009]密码

    题目链接:[JSOI2009]密码 我们先看第一问:输出方案数 我们把所有给出来的串丢到AC自动机里面去,然后在建出来的\(trie\)图上跑dp 由于\(n\leq 10\)我们很自然的就想到了状压 ...