题目描述

给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大。

例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4],

连续子序列 [4,-1,2,1] 的和最大,为 6。

扩展练习:

若你已实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

思路

思路一:

maxSum 必然是以nums[i](取值范围为nums[0] ~ nums[n-1])结尾的某段构成的,也就是说maxSum的candidate必然是以nums[i]结果的。如果遍历每个candidate,然后进行比较,那么就能找到最大的maxSum了。

假设把nums[i]之前的连续段叫做sum。可以很容易想到:

  1. 如果sum>=0,就可以和nums[i]拼接在一起构成新的sum。因为不管nums[i]多大,加上一个正数总会更大,这样形成一个新的candidate。
  2. 反之,如果sum<0,就没必要和nums[i]拼接在一起了。因为不管nums[i]多小,加上一个负数总会更小。此时由于题目要求数组连续,所以没法保留原sum,所以只能让sum等于从nums[i]开始的新的一段数了,这一段数字形成新的candidate。
  3. 如果每次得到新的candidate都和全局的maxSum进行比较,那么必然能找到最大的max sum subarray.

在循环过程中,用maxSum记录历史最大的值。从nums[0]到nums[n-1]一步一步地进行。

思路二:

遍历array,对于每一个数字,我们判断,(之前的sum + 这个数字) 和 (这个数字) 比大小,如果(这个数字)自己就比 (之前的sum + 这个数字) 大的话,那么说明不需要再继续加了,直接从这个数字,开始继续,因为它自己已经比之前的sum都大了。

反过来,如果 (之前的sum + 这个数字)大于 (这个数字)就继续加下去。

利用动态规划做题。

只遍历数组一遍,当从头到尾部遍历数组A, 遇到一个数有两种选择 (1)加入之前subArray (2)自己另起一个subArray

设状态S[i], 表示以A[i]结尾的最大连续子序列和,状态转移方程如下:

S[i] = max(S[i-1] + A[i],A[i])

从状态转移方程上S[i]只与S[i-1]有关,与其他都无关,因此可以用一个变量来记住前一个的最大连续数组和就可以了。这样就可以节省空间了。

代码实现

package Array;

/**
* 53.Maximum Subarray(最大子序和)
* 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大。
* 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4],
* 连续子序列 [4,-1,2,1] 的和最大,为 6。
*/
public class Solution53 {
public static void main(String[] args) {
Solution53 solution53 = new Solution53();
int[] arr = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
System.out.println(solution53.maxSubArray(arr));
} /**
* maxSum 必然是以nums[i](取值范围为nums[0] ~ nums[n-1])结尾的某段构成的,也就是说maxSum的candidate必然是以nums[i]结果的。如果遍历每个candidate,然后进行比较,那么就能找到最大的maxSum了。
* 假设把nums[i]之前的连续段叫做sum。可以很容易想到:
* 1. 如果sum>=0,就可以和nums[i]拼接在一起构成新的sum。因为不管nums[i]多大,加上一个正数总会更大,这样形成一个新的candidate。
* 2. 反之,如果sum<0,就没必要和nums[i]拼接在一起了。因为不管nums[i]多小,加上一个负数总会更小。此时由于题目要求数组连续,所以没法保留原sum,所以只能让sum等于从nums[i]开始的新的一段数了,这一段数字形成新的candidate。
* 3. 如果每次得到新的candidate都和全局的maxSum进行比较,那么必然能找到最大的max sum subarray.
* 在循环过程中,用maxSum记录历史最大的值。从nums[0]到nums[n-1]一步一步地进行。
*
* @param nums
* @return
*/
public int maxSubArray(int[] nums) {
int sum = 0; //或者初始化为 sum = INT_MIN 也OK。
int maxSum = nums[0];
for (int i = 0; i < nums.length; i++) {
if (sum >= 0) {
sum += nums[i];
} else {
sum = nums[i];
}
if (sum > maxSum) {
maxSum = sum;
}
}
return maxSum;
} /**
* 遍历array,对于每一个数字,我们判断,(之前的sum + 这个数字) 和 (这个数字) 比大小,如果(这个数字)自己就比 (之前的sum + 这个数字) 大的话,那么说明不需要再继续加了,直接从这个数字,开始继续,因为它自己已经比之前的sum都大了。
* 反过来,如果 (之前的sum + 这个数字)大于 (这个数字)就继续加下去。
* 利用动态规划做题。
* 只遍历数组一遍,当从头到尾部遍历数组A, 遇到一个数有两种选择 (1)加入之前subArray (2)自己另起一个subArray
* 设状态S[i], 表示以A[i]结尾的最大连续子序列和,状态转移方程如下:
* S[i] = max(S[i-1] + A[i],A[i])
* 从状态转移方程上S[i]只与S[i-1]有关,与其他都无关,因此可以用一个变量来记住前一个的最大连续数组和就可以了。
* 这样就可以节省空间了。
* 时间复杂度:O(n) 空间复杂度:O(1)
*/
public int maxSubArray_2(int[] nums) {
int sum = 0; //或者初始化为 sum = INT_MIN 也OK。
int maxSum = nums[0];
//动态规划
for (int i = 0; i < nums.length; i++) {
sum = Math.max(sum + nums[i], nums[i]);
maxSum = Math.max(sum, maxSum);
}
return maxSum;
}
}

Leetcode#53.Maximum Subarray(最大子序和)的更多相关文章

  1. LeetCode 53. Maximum Subarray最大子序和 (C++)

    题目: Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

  2. 【LeetCode】53. Maximum Subarray 最大子序和 解题报告(Python & C++ & Java)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力解法 动态规划 日期 题目地址: https:/ ...

  3. [LeetCode] 53. Maximum Subarray 最大子数组

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  4. [leetcode]53. Maximum Subarray最大子数组和

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  5. 53. Maximum Subarray最大子序和

    网址:https://leetcode.com/problems/maximum-subarray/submissions/ 很简单的动态规划 我们可以把 dp[i] 表示为index为 i 的位置上 ...

  6. 【LeetCode】Maximum Subarray(最大子序和)

    这道题是LeetCode里的第53道题. 题目描述: 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. 示例: 输入: [-2,1,-3,4,-1 ...

  7. [LeetCode] 53. Maximum Subarray 最大子数组 --动态规划+分治

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  8. [array] leetcode - 53. Maximum Subarray - Easy

    leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...

  9. 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略

    原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

随机推荐

  1. [bzoj3524][Couriers]

    题目链接 思路 观察这个\((r - l + 1)/2\),很容易证明,如果一个数出现次数大于\((r - l + 1) / 2\),那么这个区间内第\((r - l + 1) / 2 + 1\)大一 ...

  2. Git使用全解

    起步 关于版本控制 Git 简史 Git 基础 安装 Git 初次运行 Git 前的配置 获取帮助 小结 Git 基础 取得项目的 Git 仓库 记录每次更新到仓库 查看提交历史 撤消操作 远程仓库的 ...

  3. 华为2018软件岗笔试题之第一题python求解分享

    闲来无事,突然看到博客园首页上有人写了篇了华为2018软件岗笔试题解题思路和源代码分享.看了下题目,感觉第一题能做出来,就想着用刚刚学的python试着写一下,花费的时间有点长~~,看来又好长时间没练 ...

  4. Day10--Python--动态传参,作用域

    python的三目运算a = 10b = 20c = a if a > b else b #先判断中间的条件a > b是否成立,成立返回if前面的值,不成立返回else后面的值,也可以 c ...

  5. C++对象作为返回值的问题

    #include "stdio.h" class Object{ public: int i; Object& method1(){ return *this; } }; ...

  6. jQuery、layer实现弹出层的打开、关闭功能实例详解

    本文主要介绍了jQuery.layer实现弹出层的打开.关闭功能,需要的朋友可以参考下,希望能帮助到大家. 打开弹出层: 在list页面带入layer.js 在list页面点击时,弹出form弹出层, ...

  7. 委托delegate

    委托delegate没有函数体.委托可以指向函数(要与指向的函数格式.类型相一致) namespace demo { public delegate double MyDelegate(double ...

  8. 高级组件——选项卡面板JTabbedPane

    选项卡面板:JTabbedPane(标签位置,布局方式) 标签位置:JTabbedPane.TOP,JTabbedPane.BOTTOM,JTabbedPane.LEFT,JTabbedPane.RI ...

  9. (数学) PTA 1005 继续(3n+1)猜想 (25 分)

    1005 继续(3n+1)猜想 (25 分) 卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程 ...

  10. go的net/rpc用法

    一:PRC是什么? RPC(Remote Procedure Call) 远程过程调用,是一个计算通信协议.该协议允许一台计算机上的程序调用另外一台计算机上的程序.远程过程调用就是2个不在同一台计算机 ...