VOC数据集生成代码使用说明
#split.py 文件 输入格式为images ,和标签txt文件,txt中的数据为坐标值共8个。 import os
import numpy as np
import math
import cv2 as cv
import imageio #path = '/media/D/code/OCR/text-detection-ctpn/data/mlt_english+chinese/image'
#path = '/home/chendali1/Gsj/text-detection-ctpn-master/prepare_training_data/image/image_1000/'
path='/home/chendali1/Gsj/prepare_training_data/ICDAR/images_train/'
#gt_path = '/home/chendali1/Gsj/text-detection-ctpn-master/prepare_training_data/label/labelDigit1000/'
gt_path='/home/chendali1/Gsj/prepare_training_data/ICDAR/result_train/'
out_path = 're_image'
if not os.path.exists(out_path):
os.makedirs(out_path)
files = os.listdir(path)
files.sort()
#files=files[:100]
for file in files:
_, basename = os.path.split(file)
if basename.lower().split('.')[-1] not in ['jpg', 'png']:
continue
stem, ext = os.path.splitext(basename) #stem=stem0.split('_')[2] gt_file = os.path.join(gt_path, stem+'.txt')
img_path = os.path.join(path, file)
print(img_path)
#print(gt_file)
img = cv.imread(img_path)
if img is None:
print('****************************')
print('Image ' + img_path + ' may be a bad picture!')
print('****************************')
newname = os.path.join(path,stem+'.gif')
os.rename(img_path,newname)
img_path=newname
print(img_path)
print('Try read with imageio.')
gif = imageio.mimread(img_path)
if gif is None:
print('****************************')
print("Image " + img_path + " can't be read!")
print('****************************') print('Read success!')
img = cv.cvtColor(gif[0], cv.COLOR_RGB2BGR) img_size = img.shape
im_size_min = np.min(img_size[0:2])
im_size_max = np.max(img_size[0:2]) im_scale = float(600) / float(im_size_min)
if np.round(im_scale * im_size_max) > 1200:
im_scale = float(1200) / float(im_size_max)
re_im = cv.resize(img, None, None, fx=im_scale, fy=im_scale, interpolation=cv.INTER_LINEAR)
re_size = re_im.shape
cv.imwrite(os.path.join(out_path, stem) + '.jpg', re_im) with open(gt_file, 'r') as f:
lines = f.readlines()
for line in lines:
splitted_line = line.strip().lower().split(',')
pt_x = np.zeros((4, 1))
pt_y = np.zeros((4, 1))
pt_x[0, 0] = int(float(splitted_line[0]) / img_size[1] * re_size[1])
pt_y[0, 0] = int(float(splitted_line[1]) / img_size[0] * re_size[0])
pt_x[1, 0] = int(float(splitted_line[2]) / img_size[1] * re_size[1])
pt_y[1, 0] = int(float(splitted_line[3]) / img_size[0] * re_size[0])
pt_x[2, 0] = int(float(splitted_line[4]) / img_size[1] * re_size[1])
pt_y[2, 0] = int(float(splitted_line[5]) / img_size[0] * re_size[0])
pt_x[3, 0] = int(float(splitted_line[6]) / img_size[1] * re_size[1])
pt_y[3, 0] = int(float(splitted_line[7]) / img_size[0] * re_size[0]) ind_x = np.argsort(pt_x, axis=0)
pt_x = pt_x[ind_x]
pt_y = pt_y[ind_x] if pt_y[0] < pt_y[1]:
pt1 = (pt_x[0], pt_y[0])
pt3 = (pt_x[1], pt_y[1])
else:
pt1 = (pt_x[1], pt_y[1])
pt3 = (pt_x[0], pt_y[0]) if pt_y[2] < pt_y[3]:
pt2 = (pt_x[2], pt_y[2])
pt4 = (pt_x[3], pt_y[3])
else:
pt2 = (pt_x[3], pt_y[3])
pt4 = (pt_x[2], pt_y[2]) xmin = int(min(pt1[0], pt2[0]))
ymin = int(min(pt1[1], pt2[1]))
xmax = int(max(pt2[0], pt4[0]))
ymax = int(max(pt3[1], pt4[1])) if xmin < 0:
xmin = 0
if xmax > re_size[1] - 1:
xmax = re_size[1] - 1
if ymin < 0:
ymin = 0
if ymax > re_size[0] - 1:
ymax = re_size[0] - 1 width = xmax - xmin
height = ymax - ymin # reimplement
step = 16.0
x_left = []
x_right = []
x_left.append(xmin)
x_left_start = int(math.ceil(xmin / 16.0) * 16.0)
if x_left_start == xmin:
x_left_start = xmin + 16
for i in np.arange(x_left_start, xmax, 16):
x_left.append(i)
x_left = np.array(x_left) x_right.append(x_left_start - 1)
for i in range(1, len(x_left) - 1):
x_right.append(x_left[i] + 15)
x_right.append(xmax)
x_right = np.array(x_right) idx = np.where(x_left == x_right)
x_left = np.delete(x_left, idx, axis=0)
x_right = np.delete(x_right, idx, axis=0) if not os.path.exists('label_tmp'):
os.makedirs('label_tmp')
with open(os.path.join('label_tmp', stem) + '.txt', 'a') as f:
#for i in range(len(x_left)):
f.writelines("tianchi\t")
f.writelines(str(int( pt_x[0, 0])))
f.writelines("\t")
f.writelines(str(int( pt_y[0, 0])))
f.writelines("\t")
f.writelines(str(int( pt_x[1, 0])))
f.writelines("\t")
f.writelines(str(int( pt_y[1, 0])))
f.writelines("\t")
f.writelines(str(int( pt_x[2, 0])))
f.writelines("\t")
f.writelines(str(int( pt_y[2, 0])))
f.writelines("\t")
f.writelines(str(int( pt_x[3, 0])))
f.writelines("\t")
f.writelines(str(int( pt_y[3, 0])))
f.writelines("\n")
#ToVoc.py 上述执行完后直接运行这个脚本文件完美生成VOC文件
from xml.dom.minidom import Document
import cv2
import os
import glob
import shutil
import numpy as np def generate_xml(name, lines, img_size, class_sets, doncateothers=True):
doc = Document() def append_xml_node_attr(child, parent=None, text=None):
ele = doc.createElement(child)
if not text is None:
text_node = doc.createTextNode(text)
ele.appendChild(text_node)
parent = doc if parent is None else parent
parent.appendChild(ele)
return ele img_name = name + '.jpg'
# create header
annotation = append_xml_node_attr('annotation')
append_xml_node_attr('folder', parent=annotation, text='tianchi')
append_xml_node_attr('filename', parent=annotation, text=img_name)
source = append_xml_node_attr('source', parent=annotation)
append_xml_node_attr('database', parent=source, text='coco_text_database')
append_xml_node_attr('annotation', parent=source, text='tianchi')
append_xml_node_attr('image', parent=source, text='tianchi')
append_xml_node_attr('flickrid', parent=source, text='')
owner = append_xml_node_attr('owner', parent=annotation)
append_xml_node_attr('name', parent=owner, text='ms')
size = append_xml_node_attr('size', annotation)
append_xml_node_attr('width', size, str(img_size[1]))
append_xml_node_attr('height', size, str(img_size[0]))
append_xml_node_attr('depth', size, str(img_size[2]))
append_xml_node_attr('segmented', parent=annotation, text='') # create objects
objs = []
for line in lines:
splitted_line = line.strip().lower().split()
cls = splitted_line[0].lower()
if not doncateothers and cls not in class_sets:
continue
cls = 'dontcare' if cls not in class_sets else cls
if cls == 'dontcare':
continue
obj = append_xml_node_attr('object', parent=annotation)
occlusion = int(0)
x1, y1, x2, y2 = int(float(splitted_line[1]) + 1), int(float(splitted_line[2]) + 1), \
int(float(splitted_line[3]) + 1), int(float(splitted_line[4]) + 1)
x0,y0,x1,y1,x2,y2,x3,y3 = int(float(splitted_line[1])+1),int(float(splitted_line[2])+1),\
int(float(splitted_line[3])+1),int(float(splitted_line[4])+1),int(float(splitted_line[5])+1),\
int(float(splitted_line[6])+1),int(float(splitted_line[7])+1),int(float(splitted_line[8])+1)
truncation = float(0)
difficult = 1 if _is_hard(cls, truncation, occlusion, x1, y1, x2, y2) else 0
truncted = 0 if truncation < 0.5 else 1 append_xml_node_attr('name', parent=obj, text=cls)
append_xml_node_attr('pose', parent=obj, text='none')
append_xml_node_attr('truncated', parent=obj, text=str(truncted))
append_xml_node_attr('difficult', parent=obj, text=str(int(difficult)))
bb = append_xml_node_attr('bndbox', parent=obj)
append_xml_node_attr('x0', parent=bb, text=str(int(x0)))
append_xml_node_attr('y0', parent=bb, text=str(y0))
append_xml_node_attr('x1', parent=bb, text=str(x1))
append_xml_node_attr('y1', parent=bb, text=str(y1))
append_xml_node_attr('x1', parent=bb, text=str(x2))
append_xml_node_attr('y1', parent=bb, text=str(y2))
append_xml_node_attr('x1', parent=bb, text=str(x3))
append_xml_node_attr('y1', parent=bb, text=str(y3)) o = {'class': cls, 'box': np.asarray([x0, y0,x1,y1, x2, y2,x3,y3], dtype=float), \
'truncation': truncation, 'difficult': difficult, 'occlusion': occlusion}
objs.append(o) return doc, objs def _is_hard(cls, truncation, occlusion, x1, y1, x2, y2):
hard = False
if y2 - y1 < 25 and occlusion >= 2:
hard = True
return hard
if occlusion >= 3:
hard = True
return hard
if truncation > 0.8:
hard = True
return hard
return hard def build_voc_dirs(outdir):
mkdir = lambda dir: os.makedirs(dir) if not os.path.exists(dir) else None
mkdir(outdir)
mkdir(os.path.join(outdir, 'Annotations'))
mkdir(os.path.join(outdir, 'ImageSets'))
mkdir(os.path.join(outdir, 'ImageSets', 'Layout'))
mkdir(os.path.join(outdir, 'ImageSets', 'Main'))
mkdir(os.path.join(outdir, 'ImageSets', 'Segmentation'))
mkdir(os.path.join(outdir, 'JPEGImages'))
mkdir(os.path.join(outdir, 'SegmentationClass'))
mkdir(os.path.join(outdir, 'SegmentationObject'))
return os.path.join(outdir, 'Annotations'), os.path.join(outdir, 'JPEGImages'), os.path.join(outdir, 'ImageSets',
'Main') if __name__ == '__main__':
_outdir = 'TEXTVOC/VOC2007'
_draw = bool(0)
_dest_label_dir, _dest_img_dir, _dest_set_dir = build_voc_dirs(_outdir)
_doncateothers = bool(1)
for dset in ['train']:
_labeldir = 'label_tmp'
_imagedir = 're_image'
class_sets = ('tianchi', 'dontcare')
class_sets_dict = dict((k, i) for i, k in enumerate(class_sets))
allclasses = {}
fs = [open(os.path.join(_dest_set_dir, cls + '_' + dset + '.txt'), 'w') for cls in class_sets]
ftrain = open(os.path.join(_dest_set_dir, dset + '.txt'), 'w') files = glob.glob(os.path.join(_labeldir, '*.txt'))
files.sort()
for file in files:
path, basename = os.path.split(file)
stem, ext = os.path.splitext(basename)
with open(file, 'r') as f:
lines = f.readlines()
img_file = os.path.join(_imagedir, stem + '.jpg') print(img_file)
img = cv2.imread(img_file)
img_size = img.shape doc, objs = generate_xml(stem, lines, img_size, class_sets=class_sets, doncateothers=_doncateothers) cv2.imwrite(os.path.join(_dest_img_dir, stem + '.jpg'), img)
xmlfile = os.path.join(_dest_label_dir, stem + '.xml')
with open(xmlfile, 'w') as f:
f.write(doc.toprettyxml(indent=' ')) ftrain.writelines(stem + '\n') cls_in_image = set([o['class'] for o in objs]) for obj in objs:
cls = obj['class']
allclasses[cls] = 0 \
if not cls in list(allclasses.keys()) else allclasses[cls] + 1 for cls in cls_in_image:
if cls in class_sets:
fs[class_sets_dict[cls]].writelines(stem + ' 1\n')
for cls in class_sets:
if cls not in cls_in_image:
fs[class_sets_dict[cls]].writelines(stem + ' -1\n') (f.close() for f in fs)
ftrain.close() print('~~~~~~~~~~~~~~~~~~~')
print(allclasses)
print('~~~~~~~~~~~~~~~~~~~')
shutil.copyfile(os.path.join(_dest_set_dir, 'train.txt'), os.path.join(_dest_set_dir, 'val.txt'))
shutil.copyfile(os.path.join(_dest_set_dir, 'train.txt'), os.path.join(_dest_set_dir, 'trainval.txt'))
for cls in class_sets:
shutil.copyfile(os.path.join(_dest_set_dir, cls + '_train.txt'),
os.path.join(_dest_set_dir, cls + '_trainval.txt'))
shutil.copyfile(os.path.join(_dest_set_dir, cls + '_train.txt'),
os.path.join(_dest_set_dir, cls + '_val.txt'))
VOC数据集生成代码使用说明的更多相关文章
- 【Detection】物体识别-制作PASCAL VOC数据集
PASCAL VOC数据集 PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge 默认为20类物体 1 数据集结构 ...
- 搭建 MobileNet-SSD 开发环境并使用 VOC 数据集训练 TensorFlow 模型
原文地址:搭建 MobileNet-SSD 开发环境并使用 VOC 数据集训练 TensorFlow 模型 0x00 环境 OS: Ubuntu 1810 x64 Anaconda: 4.6.12 P ...
- 在Ubuntu内制作自己的VOC数据集
一.VOC数据集的简介 PASCAL VOC为图像的识别和分类提供了一整套标准化的优秀数据集,基本上就是目标检测数据集的模板.现在有VOC2007,VOC2012.主要有20个类.而现在主要的模型评估 ...
- 【工具引入】uiautomatorviewer 查找元素后自动生成代码
缘起 公司部门调整PC部门和无线部门合并,原本负责主站PC端自动化的同事需要马上上手安卓,IOS自动化.对于初次接触移动端的测试者来说,跨度还是有点大的.加之人员有些变动,不得不搞个工具降低学习成本, ...
- PASCAL VOC数据集分析(转)
PASCAL VOC数据集分析 PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge. 本文主要分析PASCAL V ...
- 自动化工具制作PASCAL VOC 数据集
自动化工具制作PASCAL VOC 数据集 1. VOC的格式 VOC主要有三个重要的文件夹:Annotations.ImageSets和JPEGImages JPEGImages 文件夹 该文件 ...
- Eclipse 使用mybatis generator插件自动生成代码
Eclipse 使用mybatis generator插件自动生成代码 标签: mybatis 2016-12-07 15:10 5247人阅读 评论(0) 收藏 举报 .embody{ paddin ...
- 目标检测:keras-yolo3之制作VOC数据集训练指南
制作VOC数据集指南 Github:https://github.com/hyhouyong/keras-yolo3 LabelImg标注工具(windows环境下):https://github.c ...
- VOC数据集 目标检测
最近在做与目标检测模型相关的工作,很多都要求VOC格式的数据集. PASCAL VOC挑战赛 (The PASCAL Visual Object Classes )是一个世界级的计算机视觉挑战赛, P ...
随机推荐
- MySql cmd下的学习笔记 —— 有关子查询的操作(where型,from型,exists型子查询)
先找到goods表 查询goods_id最大的商品 where型的子查询 查询goods_id最大的商品(不能用排序) 把两步写成一步,就是子查询 from型子查询 查找出每种cat_id下goods ...
- openstack Q版部署-----安装报错问题
1.实例开机提示找不到磁盘Booting from Hard Disk... GRUB. 开启 CPU 虚拟化支持. 将计算节点 nova.conf 配置修改如下即可: [libvirt] cpu_m ...
- HTML5实现全屏
现在主流的浏览器都支持全屏,但是各家实现不一.下面是主流浏览器实现方法: // W3C 提议 element.requestFullscreen(); element.exitFullscreen() ...
- Django 中的 model 继承
Django 中的 model 继承和 Python 中的类继承非常相似,只不过你要选择具体的实现方式:让父 model 拥有独立的数据库:还是让父 model 只包含基本的公共信息,而这些信息只能由 ...
- OPENSSL编程 第二十章 椭圆曲线
20.1 ECC介绍 椭圆曲线算法可以看作是定义在特殊集合下数的运算,满足一定的规则.椭圆曲线在如下两个域中定义:Fp域和F2m域. Fp域,素数域,p为素数: F2m域:特征为2的有限域,称之为二 ...
- Jquyer轮播带数字和提示文字
效果图如下: 代码如下: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http: ...
- "字体arial不支持样式regular"的解决方法
软件报错,提示“字体arial不支持样式regular”的提示,这是由于字体arial缺失导致的, “字体arial不支持样式regular”的解决方法如下: 方法/步骤 1.用户需要先下载arial ...
- 设置外部查找工具来索引 Confluence 6
任何网页的 crawler 工具都可以被用来索引你的 Confluence 站点中的内容.如果你希望注册用户才能够查看的内容也被索引的话,你需要为你的 Confluence 创建一个只被 crawl ...
- Confluence 6 Microsoft SQL Server 设置准备
在开始前,请检查: 请查看 Supported Platforms 页面来获得 Confluence 系统支持的 SQL Server 数据库版本.你需要在安装 Confluence 之前升级你的 O ...
- Confluence 6 workbox 的位置
Confluence 6 workbox 的位置在首页什么地方? workbox 应该在页面顶部的用户登录后的地方. https://www.cwiki.us/display/CONFLUENCEWI ...