[WC2011]最大XOR和路径(贪心+线性基)
题目大意:给一张无向图,求一条1-n的路径,是路径边权的异或和最小。
题解
这道题的思路很妙,首先我们可以随便找出一条从1到n的路径来,然后我们可以选一些环。
其实不管这个环和这条路径有怎样的关系,我们都是可以直接选的。
比如说选了一个和这个路径没有交的环,等价于从1走到了这个环然后走了一圈又走回到了1,一条边被异或两次相当于吗,没走。
对于和路径有交的环,异或上它相当于把有交的部分异或两次,相当于走了这个环,也是合法的。
然后我们把所有环插入线性基中,预处理可以用dfs实现。
代码
#include<iostream>
#include<cstdio>
#define N 100002
using namespace std;
typedef long long ll;
ll dis[N],tot,head[N],b[],n,m;
bool vis[N];
inline ll rd(){
ll x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
struct edge{int n,to;ll l;}e[N<<];
inline void add(int u,int v,ll l){e[++tot].n=head[u];e[tot].to=v;e[tot].l=l;head[u]=tot;}
inline void ins(ll x){
for(int i=;i>=;--i)if((1ll<<i)&x){
if(b[i])x^=b[i];
else{b[i]=x;return;}
}
}
inline ll query(ll x){
for(int i=;i>=;--i)if((b[i]^x)>x)x^=b[i];
return x;
}
void dfs(int u){
vis[u]=;
for(int i=head[u];i;i=e[i].n){
int v=e[i].to;
if(vis[v])ins(dis[u]^dis[v]^e[i].l);
else dis[v]=dis[u]^e[i].l,dfs(v);
}
}
int main(){
n=rd();m=rd();ll u,v,w;
for(int i=;i<=m;++i){
u=rd();v=rd();w=rd();
add(u,v,w);add(v,u,w);
}
dfs();
printf("%lld\n",query(dis[n]));
return ;
}
[WC2011]最大XOR和路径(贪心+线性基)的更多相关文章
- [WC2011]最大XOR和路径(线性基)
P4151 [WC2011]最大XOR和路径 题目描述 XOR(异或)是一种二元逻辑运算,其运算结果当且仅当两个输入的布尔值不相等时才为真,否则为假. XOR 运算的真值表如下( 1 表示真, 0 表 ...
- 洛谷P4151 [WC2011]最大XOR和路径(线性基)
传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 首先看到异或就想到线性基 我们考虑有一条路径,那么从这条路径走到图中的任意一个环再走回这条路径上,对答案的贡献是这个环的异或和,走到这个环上的路径对 ...
- [WC2011]最大XOR和路径 线性基
[WC2011]最大XOR和路径 LG传送门 需要充分发掘经过路径的性质:首先注意不一定是简单路径,但由于统计的是异或值,重复走是不会被统计到的,考虑对于任意一条从\(1\)到\(n\)的路径的有效部 ...
- 洛谷 P4151 [WC2011]最大XOR和路径 解题报告
P4151 [WC2011]最大XOR和路径 题意 求无向带权图的最大异或路径 范围 思路还是很厉害的,上午想了好一会儿都不知道怎么做 先随便求出一颗生成树,然后每条返祖边都可以出现一个环,从的路径上 ...
- 题解-[WC2011]最大XOR和路径
[WC2011]最大XOR和路径 给一个 \(n\) 个点 \(m\) 条边(权值为 \(d_i\))的无向有权图,可能有重边和子环.可以多次经过一条边,求 \(1\to n\) 的路径的最大边权异或 ...
- P4151 [WC2011]最大XOR和路径
P4151 [WC2011]最大XOR和路径 一道妙极了的题. 首先直接从1走到n 然后现在图上有很多环 所以可以在走到n之后走到环上一个点,再走一遍环,再原路返回.这样就会xor上环的权值. 然后只 ...
- 洛谷P4151 [WC2011] 最大XOR和路径 [线性基,DFS]
题目传送门 最大XOR和路径 格式难调,题面就不放了. 分析: 一道需要深刻理解线性基的题目. 好久没打过线性基的题了,一开始看到这题还是有点蒙逼的,想了几种方法全被否定了.还是看了大佬的题解才会做的 ...
- 【线性基/神仙题】P4151 [WC2011]最大XOR和路径
Description 给定一个无向连通图,边有边权,求一个 \(1~\sim n\) 的路径,最大化边权的异或和.如果一条边经过多次则计算多次. Input 第一行是两个整数 \(n,m\) 代表点 ...
- [luogu4151 WC2011] 最大XOR和路径 (线性基)
传送门 输入输出样例 输入样例#1: 5 7 1 2 2 1 3 2 2 4 1 2 5 1 4 5 3 5 3 4 4 3 2 输出样例#1: 6 说明 [样例说明] 根据异或的性质,将一个数异或两 ...
随机推荐
- Java.lang.OutOfMemoryError:Metaspace
Understand the OutOfMemoryError Exceptionhttps://docs.oracle.com/javase/8/docs/technotes/guides/trou ...
- php trait使用
trait类似于基类 同样的方法优先级为 本类>trait>基类 <?php /** * Created by PhpStorm. * User: mac * Date: 2019 ...
- PropertyChangeSupport 监听器模式的应用
PropertyChangeSupport 类实现的监听器功能 ,它是java jdk自带的一个类,用于监听某个对象属性的改变来触发相应信息,具体看代码介绍 import java.beans.Pro ...
- [转帖]Linux:cut命令详解
Linux:cut命令详解 https://www.cnblogs.com/Spiro-K/p/6361646.html cut -f cut -f -d cut -c1- 这三个命令好像最常见, 记 ...
- synchronized与volatile的区别及各自的作用、原理(学习记录)
synchronized与volatile的区别,它们的作用及原理? 说到两者的区别,先要了解锁提供的两种特性:互斥(mutual exclusion) 和可见性(visibility). 互斥:即一 ...
- vue & iview
vue & iview ui components https://codepen.io/webgeeker/pen/EJmQxQ https://www.iviewui.com/docs/g ...
- JSP从入门到精通
1. jsp开发环境配置 在windows下配置jsp的开发环境: 假设已经安装好了jdk,下面来配置tomcat 去http://tomcat.apache.org 下载tomcat windows ...
- vue-cli(vue脚手架)
vue-cli用于自动生成vue+webpack项目. 安装webpack:npm install webpack -g 检查webpack是否安装成功和版本:webpack -v 如果是webpac ...
- 配置 BizTalk Server
使用“基本配置”或“自定义配置”配置 BizTalk Server. 基本配置与自定义配置 如果配置使用域组,则进行“自定义配置”. 如果配置使用自定义组名称而不是默认组名称,则进行“自定 ...
- Js 中一系列宽度和高度的学习
在学习元素一系列宽度和高度之前,我们先来看一个平时开发中几乎不会遇到的问题,那就是html文档声明<!DOCTYPE html> 确实会对元素的宽高产生影响.几乎不会遇到,是因为我们在写h ...