Description

看题戳我 给你一个序列,要求支持区间加斐波那契数列和区间求和。\(~n \leq 3 \times 10 ^ 5, ~fib_1 = fib_2 = 1~\).

Solution

​ 先来考虑一段斐波那契数列如何快速求和,根据性质有

\[\begin {align}
fib_n &= fib_{n - 1} + fib_{n - 2} \\
&= fib_ {n - 2} + fib_{n - 3} + fib_{n - 2} \\
&= fib_{n - 3} + fib_{n - 4} + fib_{n - 3} + fib_{n - 2} \\
&= \dots \\
&= fib_2 + \sum_{i = 1}^{n - 2} {fib_i}
\end {align}
\]

​ 可以发现这里有个\(~\sum_{i = 1} ^ {n - 2} {fib_i}\),转换一下就是\(~\sum_{i = 1} ^ {n}fib_i = fib_{n + 2} - fib_2\).而两个斐波那契数列对应项加起来之后还是一个类斐波那契数列,记为\(~S_i\),设这个类斐波那契数列的起始项\(S_1 = a, S_2 = b\),显然有\(~S_i = a \times fib_{i - 2} + b \times fib_{i - 1}\).那么对于一段类斐波那契数列的求和,我们只要记起始的两项和这段数列的长度即可。现在可以用简单的线段树区间加来维护了,\(~PushDown~\)操作有一点细节,注意要分开算区间的前两项。具体看代码。。

Code

#include<bits/stdc++.h>
#define For(i, j, k) for(int i = j; i <= k; ++i)
#define Forr(i, j, k) for(int i = j; i >= k; --i)
using namespace std; inline int read() {
int x = 0, p = 1; char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') p = -1;
for(; isdigit(c); c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x *= p;
} inline void File() {
freopen("cf446c.in", "r", stdin);
freopen("cf446c.out", "w", stdout);
} const int N = 3e5 + 10, mod = 1e9 + 9;
int n, m, fib[N]; inline int add(int a, int b) { return (a += b) >= mod ? a - mod : a; } namespace SGT {
#define lc (rt << 1)
#define rc (rt << 1 | 1)
#define mid (l + r >> 1)
#define lson lc, l, mid
#define rson rc, mid + 1, r int tr[N << 2], t1[N << 2], t2[N << 2]; inline void pushup(int rt) { tr[rt] = (tr[lc] + tr[rc]) % mod; } inline int S(int a, int b, int x) {
return x == 1 ? a : (x == 2 ? b : (1ll * a * fib[x - 2] + 1ll * b * fib[x - 1]) % mod);
} inline int sum(int a, int b, int x) {
return x == 1 ? a : (x == 2 ? add(a, b) : (S(a, b, x + 2) - b + mod) % mod);
} inline void pushdown(int rt, int l, int r) {
if (t1[rt]) {
t1[lc] = add(t1[lc], t1[rt]), t2[lc] = add(t2[lc], t2[rt]);
tr[lc] = add(tr[lc], sum(t1[rt], t2[rt], mid - l + 1));
int T1 = S(t1[rt], t2[rt], mid - l + 2), T2 = S(t1[rt], t2[rt], mid - l + 3);
t1[rc] = add(t1[rc], T1), t2[rc] = add(t2[rc], T2);
tr[rc] = add(tr[rc], sum(T1, T2, r - mid));
t1[rt] = t2[rt] = 0;
}
} inline void build(int rt, int l, int r) {
if (l == r) tr[rt] = read();
else build(lson), build(rson), pushup(rt);
} inline void update(int rt, int l, int r, int L, int R) {
if (L <= l && r <= R) {
tr[rt] = add(tr[rt], sum(fib[l - L + 1], fib[l - L + 2], r - l + 1));
t1[rt] = add(t1[rt], fib[l - L + 1]); t2[rt] = add(t2[rt], fib[l - L + 2]);
return ;
}
pushdown(rt, l, r);
if (L <= mid) update(lson, L, R);
if (R > mid) update(rson, L, R);
pushup(rt);
} inline int query(int rt, int l, int r, int L, int R) {
if (L <= l && r <= R) return tr[rt];
pushdown(rt, l, r); int res = 0;
if (L <= mid) res = add(res, query(lson, L, R));
if (R > mid) res = add(res, query(rson, L, R));
return pushup(rt), res;
} #undef lc
#undef rc
#undef mid
#undef lson
#undef rson
} int main() {
File();
n = read(), m = read();
fib[1] = fib[2] = 1;
For(i, 3, n + 5) fib[i] = (fib[i - 1] + fib[i - 2]) % mod; using namespace SGT;
build(1, 1, n);
while (m --) {
int opt = read(), l = read(), r = read();
opt == 1 ? update(1, 1, n, l, r), 1 : printf("%d\n", query(1, 1, n, l, r)), 1;
} return 0;
}

【CF446C】DZY Loves Fibonacci Numbers (线段树 + 斐波那契数列)的更多相关文章

  1. CF446C DZY Loves Fibonacci Numbers 线段树 + 数学

    有两个性质需要知道: $1.$ 对于任意的 $f[i]=f[i-1]+f[i-2]$ 的数列,都有 $f[i]=fib[i-2]\times f[1]+fib[i-1]\times f[2]$ 其中 ...

  2. [Codeforces 316E3]Summer Homework(线段树+斐波那契数列)

    [Codeforces 316E3]Summer Homework(线段树+斐波那契数列) 顺便安利一下这个博客,给了我很大启发(https://gaisaiyuno.github.io/) 题面 有 ...

  3. Codeforces 446-C DZY Loves Fibonacci Numbers 同余 线段树 斐波那契数列

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  4. ACM学习历程—Codeforces 446C DZY Loves Fibonacci Numbers(线段树 && 数论)

    Description In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence ...

  5. codeforces 446C DZY Loves Fibonacci Numbers 线段树

    假如F[1] = a, F[2] = B, F[n] = F[n - 1] + F[n - 2]. 写成矩阵表示形式可以很快发现F[n] = f[n - 1] * b + f[n - 2] * a. ...

  6. Codeforces446C DZY Loves Fibonacci Numbers(线段树 or 分块?)

    第一次看到段更斐波那契数列的,整个人都不会好了.事后看了题解才明白了一些. 首先利用二次剩余的知识,以及一些数列递推式子有下面的 至于怎么解出x^2==5(mod 10^9+9),我就不知道了,但是要 ...

  7. Codeforces 446C DZY Loves Fibonacci Numbers [线段树,数论]

    洛谷 Codeforces 思路 这题知道结论就是水题,不知道就是神仙题-- 斐波那契数有这样一个性质:\(f_{n+m}=f_{n+1}f_m+f_{n}f_{m-1}\). 至于怎么证明嘛-- 即 ...

  8. 【思维题 线段树】cf446C. DZY Loves Fibonacci Numbers

    我这种maintain写法好zz.考试时获得了40pts的RE好成绩 In mathematical terms, the sequence Fn of Fibonacci numbers is de ...

  9. cf446C DZY Loves Fibonacci Numbers

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

随机推荐

  1. kubectl常用命令汇总

    #查看k8s的所有node节点 kubectl get node #查看ns的pod kubectl get pod --all-namespaces -o wide kubectl get pod ...

  2. [2017BUAA软工助教]团队建议

    关于团队项目的个人建议 (以下排名不分先后) 一.hotcode5 你们组要做一个"课件-心得"共享平台 目前最大的竞争对手其实不是北航课程中心网站,而是每个系自己的大班群. 热心 ...

  3. Python爬虫:爬取人人都是产品经理的数据

    爬取内容: 人人都是产品经理首页(www.woshipm.com)左侧[最新文章]下如图样式的文章标题.浏览量和缩略图. 思路: 1. 用BeautifulSoup解析网页 变量名 = Beautif ...

  4. Docker防主机意外断电导致容器实例无法驱动解决方案:UPS || write barrier || 上btrfs定期snapshot

    Write barrier - Wikipediahttps://en.wikipedia.org/wiki/Write_barrier R大在在介绍CMS时提到了write barrier写屏蔽的概 ...

  5. Tomcat集成Memcached Session Manager方案

    http://repo1.maven.org/maven2/de/javakaffee/msm/memcached-session-manager/2.3.2/memcached-session-ma ...

  6. 3proxy.cfg 配置文件解析

    最新配置文件的man文档所在位置: /程序目录/doc/html/man3/3proxy.cfg.3.html 官网: https://3proxy.ru/ Download 3proxy tiny ...

  7. Centos 7 关闭selinux and firewall

    关闭selinx,重启生效 修改文件 /etc/selinux/config 修改 SELINUX=disabled getenforce #查selinux状态 setenforce #关闭seli ...

  8. h5 文件下载

    一.a 标签 移动端不支持 onDownFile= (url, filename) => { const downUrl = `http://10.1.109.123:19092/down/to ...

  9. Java 验证码详解

    1 使用Servlet实现验证码,涉及的知识点主要为java 绘图技术与session保存数据. HTML页面 <html> <image src='images/logo1.jpg ...

  10. Oracle RMAN备份与还原注意事项

    1 备份文件管理 如果要删除之前的备份,不要手动去目录下删除,应该在rman命令模式下使用删除命令,否则虽然在磁盘上把物理备份文件删除了,但是使用备份查看命令会一直看到已经删除的备份文件 list b ...