Description

看题戳我 给你一个序列,要求支持区间加斐波那契数列和区间求和。\(~n \leq 3 \times 10 ^ 5, ~fib_1 = fib_2 = 1~\).

Solution

​ 先来考虑一段斐波那契数列如何快速求和,根据性质有

\[\begin {align}
fib_n &= fib_{n - 1} + fib_{n - 2} \\
&= fib_ {n - 2} + fib_{n - 3} + fib_{n - 2} \\
&= fib_{n - 3} + fib_{n - 4} + fib_{n - 3} + fib_{n - 2} \\
&= \dots \\
&= fib_2 + \sum_{i = 1}^{n - 2} {fib_i}
\end {align}
\]

​ 可以发现这里有个\(~\sum_{i = 1} ^ {n - 2} {fib_i}\),转换一下就是\(~\sum_{i = 1} ^ {n}fib_i = fib_{n + 2} - fib_2\).而两个斐波那契数列对应项加起来之后还是一个类斐波那契数列,记为\(~S_i\),设这个类斐波那契数列的起始项\(S_1 = a, S_2 = b\),显然有\(~S_i = a \times fib_{i - 2} + b \times fib_{i - 1}\).那么对于一段类斐波那契数列的求和,我们只要记起始的两项和这段数列的长度即可。现在可以用简单的线段树区间加来维护了,\(~PushDown~\)操作有一点细节,注意要分开算区间的前两项。具体看代码。。

Code

#include<bits/stdc++.h>
#define For(i, j, k) for(int i = j; i <= k; ++i)
#define Forr(i, j, k) for(int i = j; i >= k; --i)
using namespace std; inline int read() {
int x = 0, p = 1; char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') p = -1;
for(; isdigit(c); c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x *= p;
} inline void File() {
freopen("cf446c.in", "r", stdin);
freopen("cf446c.out", "w", stdout);
} const int N = 3e5 + 10, mod = 1e9 + 9;
int n, m, fib[N]; inline int add(int a, int b) { return (a += b) >= mod ? a - mod : a; } namespace SGT {
#define lc (rt << 1)
#define rc (rt << 1 | 1)
#define mid (l + r >> 1)
#define lson lc, l, mid
#define rson rc, mid + 1, r int tr[N << 2], t1[N << 2], t2[N << 2]; inline void pushup(int rt) { tr[rt] = (tr[lc] + tr[rc]) % mod; } inline int S(int a, int b, int x) {
return x == 1 ? a : (x == 2 ? b : (1ll * a * fib[x - 2] + 1ll * b * fib[x - 1]) % mod);
} inline int sum(int a, int b, int x) {
return x == 1 ? a : (x == 2 ? add(a, b) : (S(a, b, x + 2) - b + mod) % mod);
} inline void pushdown(int rt, int l, int r) {
if (t1[rt]) {
t1[lc] = add(t1[lc], t1[rt]), t2[lc] = add(t2[lc], t2[rt]);
tr[lc] = add(tr[lc], sum(t1[rt], t2[rt], mid - l + 1));
int T1 = S(t1[rt], t2[rt], mid - l + 2), T2 = S(t1[rt], t2[rt], mid - l + 3);
t1[rc] = add(t1[rc], T1), t2[rc] = add(t2[rc], T2);
tr[rc] = add(tr[rc], sum(T1, T2, r - mid));
t1[rt] = t2[rt] = 0;
}
} inline void build(int rt, int l, int r) {
if (l == r) tr[rt] = read();
else build(lson), build(rson), pushup(rt);
} inline void update(int rt, int l, int r, int L, int R) {
if (L <= l && r <= R) {
tr[rt] = add(tr[rt], sum(fib[l - L + 1], fib[l - L + 2], r - l + 1));
t1[rt] = add(t1[rt], fib[l - L + 1]); t2[rt] = add(t2[rt], fib[l - L + 2]);
return ;
}
pushdown(rt, l, r);
if (L <= mid) update(lson, L, R);
if (R > mid) update(rson, L, R);
pushup(rt);
} inline int query(int rt, int l, int r, int L, int R) {
if (L <= l && r <= R) return tr[rt];
pushdown(rt, l, r); int res = 0;
if (L <= mid) res = add(res, query(lson, L, R));
if (R > mid) res = add(res, query(rson, L, R));
return pushup(rt), res;
} #undef lc
#undef rc
#undef mid
#undef lson
#undef rson
} int main() {
File();
n = read(), m = read();
fib[1] = fib[2] = 1;
For(i, 3, n + 5) fib[i] = (fib[i - 1] + fib[i - 2]) % mod; using namespace SGT;
build(1, 1, n);
while (m --) {
int opt = read(), l = read(), r = read();
opt == 1 ? update(1, 1, n, l, r), 1 : printf("%d\n", query(1, 1, n, l, r)), 1;
} return 0;
}

【CF446C】DZY Loves Fibonacci Numbers (线段树 + 斐波那契数列)的更多相关文章

  1. CF446C DZY Loves Fibonacci Numbers 线段树 + 数学

    有两个性质需要知道: $1.$ 对于任意的 $f[i]=f[i-1]+f[i-2]$ 的数列,都有 $f[i]=fib[i-2]\times f[1]+fib[i-1]\times f[2]$ 其中 ...

  2. [Codeforces 316E3]Summer Homework(线段树+斐波那契数列)

    [Codeforces 316E3]Summer Homework(线段树+斐波那契数列) 顺便安利一下这个博客,给了我很大启发(https://gaisaiyuno.github.io/) 题面 有 ...

  3. Codeforces 446-C DZY Loves Fibonacci Numbers 同余 线段树 斐波那契数列

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  4. ACM学习历程—Codeforces 446C DZY Loves Fibonacci Numbers(线段树 && 数论)

    Description In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence ...

  5. codeforces 446C DZY Loves Fibonacci Numbers 线段树

    假如F[1] = a, F[2] = B, F[n] = F[n - 1] + F[n - 2]. 写成矩阵表示形式可以很快发现F[n] = f[n - 1] * b + f[n - 2] * a. ...

  6. Codeforces446C DZY Loves Fibonacci Numbers(线段树 or 分块?)

    第一次看到段更斐波那契数列的,整个人都不会好了.事后看了题解才明白了一些. 首先利用二次剩余的知识,以及一些数列递推式子有下面的 至于怎么解出x^2==5(mod 10^9+9),我就不知道了,但是要 ...

  7. Codeforces 446C DZY Loves Fibonacci Numbers [线段树,数论]

    洛谷 Codeforces 思路 这题知道结论就是水题,不知道就是神仙题-- 斐波那契数有这样一个性质:\(f_{n+m}=f_{n+1}f_m+f_{n}f_{m-1}\). 至于怎么证明嘛-- 即 ...

  8. 【思维题 线段树】cf446C. DZY Loves Fibonacci Numbers

    我这种maintain写法好zz.考试时获得了40pts的RE好成绩 In mathematical terms, the sequence Fn of Fibonacci numbers is de ...

  9. cf446C DZY Loves Fibonacci Numbers

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

随机推荐

  1. Python学习第十五篇——类继承和类实例化

    学习Python类时,我们明白了类的本质,以及所谓的面向对象编程思想强调的对事物本身的属性,我们对某一类事物进行描述——采用了很多方法,这些方法描述了类的属性(比如猫科动物的眼睛,四肢,是否哺乳类等等 ...

  2. rabbitmq集群运维一点总结

    说明:以下操作都以三节点集群为例,机器名标记为机器A.机器B.机器C,如果为双节点忽略机器C,如果为各多节点则与机器C操作相同 一.rabbitmq集群必要条件 1.1.绑定实体ip,即ip a所能查 ...

  3. 安装pandas时出现环境错误

    在安装pandas时出现Could not install packages due to an EnvironmentErrorConsider using the `--user` option ...

  4. iOS基于B站的IJKPlayer框架的流媒体探究

    阅读数:6555 学习交流及技术讨论可新浪微博关注:极客James 一.流媒体 流媒体技术从传输形式上可以分为:渐进式下载和实施流媒体. 1.渐进式下载 它是介于实时播放和本地播放之间的一种播放方式, ...

  5. 使用JavaScript动态刷新页面局部内容

    html页面: <%@page contentType="text/html; charset=Shift_JIS"%><html>    <head ...

  6. PyCharm中快速给选中的代码加上{}、<>、()、[]

    快捷键Ctrl + Shift + S 呼出下图所示界面:

  7. PHP 高并发秒杀解决方案

    本文提供 PHP 高并发秒杀解决方案(附加三个案例说明(普通流程,使用文件锁,使用redis消息队列)) 1:(正常流程,不做任何高并发处理),代码如下: <?php $_mysqli = ne ...

  8. 如何让pl/sql developer记住密码,实现快速登录

    前两天,有同事使用plsql的时候,切换数据库的时候需要不断的重复输入密码,这样太麻烦了. 下面,我这里说下如何的实现plsql不需要输入密码就能快速登录的方法: 1.一开始登录,首先像往常那样输入密 ...

  9. 莫烦theano学习自修第九天【过拟合问题与正规化】

    如下图所示(回归的过拟合问题):如果机器学习得到的回归为下图中的直线则是比较好的结果,但是如果进一步控制减少误差,导致机器学习到了下图中的曲线,则100%正确的学习了训练数据,看似较好,但是如果换成另 ...

  10. 为WebRTC 应用部署Turn Server

    部署WebRTC 或 SIP p2p 方案时经常会遇到p2p 无法穿透的环境, 这时就是TunServer 的用武之地了. 这里我们使用turnserver-0.7.3 下载confuse依赖库 wg ...