【BZOJ5213】[ZJOI2018]迷宫(神仙题)
【BZOJ5213】[ZJOI2018]迷宫(神仙题)
题面
题解
首先可以很容易的得到一个\(K\)个点的答案。
构建\(K\)个点分别表示\(mod\ K\)的余数。那么点\(i\)的出边\(j\)指向\(i*m+j\ mod\ K\)。容易证明这样子一定是可行的。
但是我们显然还有一部分点是可以丢掉的,即出现点等价的时候,直接合并两个点即可。
那么什么情况下两个点等价呢?显然是两个点可以到达的点集相同的时候是可以直接把这两个点给合并的。
考虑一下\(i*m\)在模\(K\)意义下相等的数的个数,令\(d=gcd(m,K)\),那么合法的取值有\(K/d\)个。定义一个参数\(l\)表示还有\([1,l]\)这些数存在。如果\(l>k/d\),那么在范围内可以取遍所有的合法取值,那么合并这些之后,剩下的部分递归处理,这里删去了\(\frac{m}{d}(k-l)\)个合并之后到数。否则如果\(l\le k/d\),或者\(d=1\),证明必定两两不等,所以这\(l\)个数必须要。
#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
ll m,k;int T;
ll Solve(ll l,ll k)
{
ll d=__gcd(m,k);if(d==1||l<=k/d)return l;
if(k<=(double)m*(k-l))return k/d;
return m/d*(k-l)+Solve((k-m*(k-l))/d,k/d);
}
int main()
{
scanf("%d",&T);
while(T--)scanf("%lld%lld",&m,&k),printf("%lld\n",Solve(k-1,k)+1);
return 0;
}
【BZOJ5213】[ZJOI2018]迷宫(神仙题)的更多相关文章
- bzoj5213: [Zjoi2018]迷宫
好题!话说省选的都开始构造了吗 由于有K的倍数的限制所以不妨取模,先建K个点表示0~K-1这些数,第i个点向[i*m,i*m+m]建边.不难发现这是合法的但不一定是最优的 考虑合并等价的点,首先从直观 ...
- yyb博客的几道神仙题
该比赛链接 T5 题意: 给你一个\(n\times n\)的网格,开始有\(m\)个被涂成黑色的格子,如果存在三个格子\((x,y)\),\((y,z)\),\((z,x)\)满足\((x,y)\) ...
- 【BZOJ5285】[HNOI2018]寻宝游戏(神仙题)
[BZOJ5285][HNOI2018]寻宝游戏(神仙题) 题面 BZOJ 洛谷 题解 既然是二进制按位的运算,显然按位考虑. 发现这样一个关系,如果是\(or\)的话,只要\(or\ 1\),那么无 ...
- 【BZOJ1071】[SCOI2007]组队(神仙题)
[BZOJ1071][SCOI2007]组队(神仙题) 题面 BZOJ 洛谷 题解 首先把式子整理一下,也就是\(A*h+B*v\le C+A*minH+B*minV\) 我们正常能够想到的做法是钦定 ...
- 【agc006f】Blackout(神仙题)
[agc006f]Blackout(神仙题) 翻译 给定一个\(n*n\)的网格图,有些格子是黑色的.如果\((x,y),(y,z)\)都是黑色的,那么\((y,x)\)也会被染黑,求最终黑格子数量. ...
- 【BZOJ3244】【NOI2013】树的计数(神仙题)
[BZOJ3244][NOI2013]树的计数(神仙题) 题面 BZOJ 这题有点假,\(bzoj\)上如果要交的话请输出\(ans-0.001,ans,ans+0.001\) 题解 数的形态和编号没 ...
- 【bzoj2118&洛谷P2371】墨墨的等式(最短路神仙题)
题目传送门:bzoj2118 洛谷P2371 这道题看了题解后才会的..果然是国家集训队的神仙题,思维独特. 首先若方程$ \sum_{i=1}^{n}a_ix_i=k $有非负整数解,那么显然对于每 ...
- P3202 [HNOI2009]通往城堡之路 神仙题
这个题不是坑人吗...写个tarjan标签,然后拿这么个神仙题来搞...代码有点看不懂,有兴趣的可以去洛谷题解区看看,懒得想了. 题干: 题目描述 听说公主被关押在城堡里,彭大侠下定决心:不管一路上有 ...
- Codeforces & Atcoder神仙题做题记录
鉴于Codeforces和atcoder上有很多神题,即使发呆了一整节数学课也是肝不出来,所以就记录一下. AGC033B LRUD Game 只要横坐标或者纵坐标超出范围就可以,所以我们只用看其中一 ...
随机推荐
- [转帖]Gartner预测:2019年全球公有云规模达2143亿美元
Gartner预测:2019年全球公有云规模达2143亿美元 https://news.cnblogs.com/n/623341/ 近日,全球领先的信息技术研究和顾问公司 Gartner 发布的最新数 ...
- Laravel5.5+ 区分前后端用户登录
Laravel 的用户认证是通过 Auth Facade 门脸实现的,手动认证可是使用 Auth::login() 或 Auth::attempt() 这两个方法实现. 以下内容纯属个人实现,也许有 ...
- Helm
helm类似yum helm下载的是配置清单文件 核心术语: Chart:一个helm程序包: Repository:Charts仓库,https/http服务器: Release:特定的Chart部 ...
- zabbix自定义模板——监控TCP连接状态
TCP十二种连接状态说明 可以使用man netstat查看 LISTEN - 侦听来自远方TCP端口的连接请求: SYN-SENT -在发送连接请求后等待匹配的连接请求: SYN-RECEIVED ...
- LeetCode & Online Programming Learning Platform
leetcode LeetCode is the best platform to help you enhance your skills, expand your knowledge and pr ...
- PyCharm的使用
1.pycharm的下载和安装 首先,去jetbrains官网https://www.jetbrains.com/pycharm/download/#section=windows 中下载最新版的pr ...
- bash中的pasue
#!/bin/bash echo 按任意键继续 read -n
- MIUI(ADUI)关闭广告推送步骤方法
MIUI自从到了版本MIUI8之后,系统增加了各种推送,让人们所诟病.很多消费者因为这个原因,不再考虑小米手机,尽管小米手机确实很便宜. 下面就说一下如何关闭所有的MIUI 8的广告推送.方法源自MI ...
- Javascript 实现复制(Copy)动作方法大全
一.实现点击按钮,复制文本框中的的内容 <script type="text/javascript"> function copyUrl2() { var Url2=d ...
- react为按钮绑定点击事件和修改属性值
注意点:1.事件名称由react提供,所以事件名首字母大写.比如onClick,onMouseOver. 2.为事件提供的处理函数,格式必须是onClick={function},没有小括号. 3.绑 ...