(2014北约自主招生)已知正实数$x_1,x_2,\cdots,x_n$满足$x_1x_2\cdots x_n=1,$求证:
$(\sqrt{2}+x_1)(\sqrt{2}+x_2)\cdots(\sqrt{2}+x_n)\ge(\sqrt{2}+1)^n$


分析:根据$\dfrac{\sum\limits_{k=1}^n\dfrac{\sqrt{2}}{\sqrt{2}+x_k}}{n}\ge\sqrt[n]{\prod\limits_{k=1}^n\dfrac{\sqrt{2}}{\sqrt{2}+x_k}}=\dfrac{\sqrt{2}}{\sqrt[n]{\prod\limits_{k=1}^n(\sqrt{2}+x_k)}}$
$\dfrac{\sum\limits_{k=1}^n\dfrac{x_k}{\sqrt{2}+x_k}}{n}\ge\sqrt[n]{\prod\limits_{k=1}^n\dfrac{x_k}{\sqrt{2}+x_k}}=\dfrac{1}{\sqrt[n]{\prod\limits_{k=1}^n(\sqrt{2}+x_k)}}$
两式相加即得.

MT【310】均值不等式的更多相关文章

  1. 均值不等式中的一则题目$\scriptsize\text{$(a+\cfrac{1}{a})^2+(b+\cfrac{1}{b})^2\ge \cfrac{25}{2}$}$

    例题已知正数\(a.b\)满足条件\(a+b=1\),求\((a+\cfrac{1}{a})^2+(b+\cfrac{1}{b})^2\)的最小值: 易错方法\((a+\cfrac{1}{a})^2+ ...

  2. 一种基于均值不等式的Listwise损失函数

    一种基于均值不等式的Listwise损失函数 1 前言 1.1 Learning to Rank 简介 Learning to Rank (LTR) , 也被叫做排序学习, 是搜索中的重要技术, 其目 ...

  3. LightOJ 1098(均值不等式,整除分块玄学优化)

    We all know that any integer number n is divisible by 1 and n. That is why these two numbers are not ...

  4. MT【175】刚刚凑巧

    已知$\Delta ABC$满足$\sin^2A+\sin^2B+\sin^2C=2\sqrt{3}\sin A\sin B\sin C,a=2$,求$A$ 提示:利用正弦定理:$a^2+b^2+c^ ...

  5. Fast Fourier Transform

    写在前面的.. 感觉自己是应该学点新东西了.. 所以就挖个大坑,去学FFT了.. FFT是个啥? 挖个大坑,以后再补.. 推荐去看黑书<算法导论>,讲的很详细 例题选讲 1.UOJ #34 ...

  6. 【uoj58】 WC2013—糖果公园

    http://uoj.ac/problem/58 (题目链接) 题意 给定一棵树,每个点有一个颜色,提供两种操作: 1.询问两点间路径上的${\sum{v[a[i]]*w[k]}}$,其中${a[i] ...

  7. Codeforces449A Jzzhu and Chocolate && 449B Jzzhu and Cities

    CF挂0了,简直碉堡了.两道题都是正确的思路但是写残了.写个解题报告记录一下心路历程. A题问的是 一个n*m的方块的矩形上切k刀,最小的那一块最大可以是多少.不难发现如果纵向切k1刀,横向切k2刀, ...

  8. [BZOJ 2738] 矩阵乘法 【分块】

    题目链接:BZOJ - 2738 题目分析 题目名称 “矩阵乘法” 与题目内容没有任何关系..就像VFK的 A+B Problem 一样.. 题目大意是给定一个矩阵,有许多询问,每次询问一个子矩阵中的 ...

  9. [BZOJ 2821] 作诗(Poetize) 【分块】

    题目链接:BZOJ - 2821 题目分析 因为强制在线了,所以无法用莫队..可以使用分块来做. 做法是,将 n 个数分成 n/x 个块,每个块大小为 x .先预处理出 f[i][j] ,表示从第 i ...

随机推荐

  1. java的instanceof关键字

    java 中的instanceof 运算符是用来判断对象是否是 特定类或这个特定类的子类 的一个实例. 用法: result = object instanceof class 参数: Result: ...

  2. struts2的基本使用

    struts2在web中当作前端控制器,接收来自页面的请求,使用过滤器拦截模式对请求进行拦截并交给相应配置的action类处理. 所以在web中使用最重要的是struts2的核心过滤器StrutsPr ...

  3. python中变量、函数、类名、模块名等命名方式

    摘要:模块名:小写字母,单词之间用_分割ad_stats.py包名:和模块名一样类名:单词首字母大写AdStatsConfigUtil全局变量名(类变量,在java中相当于static变量):大写字母 ...

  4. 关于php,python,javascript文件或者模块导入引入的区别和联系

    前言: 我们经常看到编程语言之间,文件或者模块的引来引去的,但是他们在各个编程语言之间有什么区别和联系呢? 1.javascript (1).全局引入方式: <script src='xxxxx ...

  5. 每周分享之JS数组的使用

    数组,一堆数字归为一组,就是一个数组,一堆对象放在一个组里,也是一个数组,概念很容易懂,说白了就是一个有限集合. JS数组的语法无法两种,插入和移除(语法自行科普).用处挺常见的,既然数组是一个集合, ...

  6. PHP之位运算符

    使用场景: 1) 判断奇数偶数 ; $i < ; $i++) { ){ echo $i.PHP_EOL; } } //输出所有奇数 2)快速修改状态 $status1 = ; $status2 ...

  7. DVWA学习笔记-----环境搭建

    DVWA是一款渗透测试的演练系统,在圈子里是很出名的.如果你需要入门,那么就选它了. 我们通常将演练系统称为靶机,下面请跟着我一起搭建DVWA测试环境.  安装PHP集成环境 我这里用的是phpstu ...

  8. Oracle RMAN备份与还原注意事项

    1 备份文件管理 如果要删除之前的备份,不要手动去目录下删除,应该在rman命令模式下使用删除命令,否则虽然在磁盘上把物理备份文件删除了,但是使用备份查看命令会一直看到已经删除的备份文件 list b ...

  9. C# Note28: Dispatcher类

    在项目中也是经常用到: 刚见到它时,你会想:为什么不直接使用System.Windows命名空间下的MessageBox类,何必要这么麻烦?(认真分析看它做了什么,具体原因下面解释) 主要介绍的方法: ...

  10. Vue 鼠标移入移出事件

    Vue 中鼠标移入移出事件 @mouseover和@mouseleave 然后绑定style   现在开始代码示例 <template> <div class="pc&qu ...