import numpy as np
x=np.random.randint(0,52,52)
x

  

k=3
y=np.zeros(20)
y

  

array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
0., 0., 0., 0., 0., 0., 0.])

  

def intcent(x,k):
return x[0:k].reshape(k)
kc=intcent(x,k)
kc array([21, 8, 45])

  

d=abs(2-kc)
np.where(d==np.min(d))[0][0] 1

  

def nearest(kc,i):
d=(abs(kc-i))
w=np.where(d==np.min(d))
return w[0][0]

  

def xclassfy(x,y,kc):
for i in range(x.shape[0]):
y[i]=nearst(kc,x[i])
return y

  

from sklearn.datasets import load_iris
iris=load_iris()
iris
x=iris.data
x

  

Out[1]:
array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5. , 3.6, 1.4, 0.2],
[5.4, 3.9, 1.7, 0.4],
[4.6, 3.4, 1.4, 0.3],
[5. , 3.4, 1.5, 0.2],
[4.4, 2.9, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.1],
[5.4, 3.7, 1.5, 0.2],
[4.8, 3.4, 1.6, 0.2],
[4.8, 3. , 1.4, 0.1],
[4.3, 3. , 1.1, 0.1],
[5.8, 4. , 1.2, 0.2],
[5.7, 4.4, 1.5, 0.4],
[5.4, 3.9, 1.3, 0.4],
[5.1, 3.5, 1.4, 0.3],
[5.7, 3.8, 1.7, 0.3],
[5.1, 3.8, 1.5, 0.3],
[5.4, 3.4, 1.7, 0.2],
[5.1, 3.7, 1.5, 0.4],
[4.6, 3.6, 1. , 0.2],
[5.1, 3.3, 1.7, 0.5],
[4.8, 3.4, 1.9, 0.2],
[5. , 3. , 1.6, 0.2],
[5. , 3.4, 1.6, 0.4],
[5.2, 3.5, 1.5, 0.2],
[5.2, 3.4, 1.4, 0.2],
[4.7, 3.2, 1.6, 0.2],
[4.8, 3.1, 1.6, 0.2],
[5.4, 3.4, 1.5, 0.4],
[5.2, 4.1, 1.5, 0.1],
[5.5, 4.2, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.1],
[5. , 3.2, 1.2, 0.2],
[5.5, 3.5, 1.3, 0.2],
[4.9, 3.1, 1.5, 0.1],
[4.4, 3. , 1.3, 0.2],
[5.1, 3.4, 1.5, 0.2],
[5. , 3.5, 1.3, 0.3],
[4.5, 2.3, 1.3, 0.3],
[4.4, 3.2, 1.3, 0.2],
[5. , 3.5, 1.6, 0.6],
[5.1, 3.8, 1.9, 0.4],
[4.8, 3. , 1.4, 0.3],
[5.1, 3.8, 1.6, 0.2],
[4.6, 3.2, 1.4, 0.2],
[5.3, 3.7, 1.5, 0.2],
[5. , 3.3, 1.4, 0.2],
[7. , 3.2, 4.7, 1.4],
[6.4, 3.2, 4.5, 1.5],
[6.9, 3.1, 4.9, 1.5],
[5.5, 2.3, 4. , 1.3],
[6.5, 2.8, 4.6, 1.5],
[5.7, 2.8, 4.5, 1.3],
[6.3, 3.3, 4.7, 1.6],
[4.9, 2.4, 3.3, 1. ],
[6.6, 2.9, 4.6, 1.3],
[5.2, 2.7, 3.9, 1.4],
[5. , 2. , 3.5, 1. ],
[5.9, 3. , 4.2, 1.5],
[6. , 2.2, 4. , 1. ],
[6.1, 2.9, 4.7, 1.4],
[5.6, 2.9, 3.6, 1.3],
[6.7, 3.1, 4.4, 1.4],
[5.6, 3. , 4.5, 1.5],
[5.8, 2.7, 4.1, 1. ],
[6.2, 2.2, 4.5, 1.5],
[5.6, 2.5, 3.9, 1.1],
[5.9, 3.2, 4.8, 1.8],
[6.1, 2.8, 4. , 1.3],
[6.3, 2.5, 4.9, 1.5],
[6.1, 2.8, 4.7, 1.2],
[6.4, 2.9, 4.3, 1.3],
[6.6, 3. , 4.4, 1.4],
[6.8, 2.8, 4.8, 1.4],
[6.7, 3. , 5. , 1.7],
[6. , 2.9, 4.5, 1.5],
[5.7, 2.6, 3.5, 1. ],
[5.5, 2.4, 3.8, 1.1],
[5.5, 2.4, 3.7, 1. ],
[5.8, 2.7, 3.9, 1.2],
[6. , 2.7, 5.1, 1.6],
[5.4, 3. , 4.5, 1.5],
[6. , 3.4, 4.5, 1.6],
[6.7, 3.1, 4.7, 1.5],
[6.3, 2.3, 4.4, 1.3],
[5.6, 3. , 4.1, 1.3],
[5.5, 2.5, 4. , 1.3],
[5.5, 2.6, 4.4, 1.2],
[6.1, 3. , 4.6, 1.4],
[5.8, 2.6, 4. , 1.2],
[5. , 2.3, 3.3, 1. ],
[5.6, 2.7, 4.2, 1.3],
[5.7, 3. , 4.2, 1.2],
[5.7, 2.9, 4.2, 1.3],
[6.2, 2.9, 4.3, 1.3],
[5.1, 2.5, 3. , 1.1],
[5.7, 2.8, 4.1, 1.3],
[6.3, 3.3, 6. , 2.5],
[5.8, 2.7, 5.1, 1.9],
[7.1, 3. , 5.9, 2.1],
[6.3, 2.9, 5.6, 1.8],
[6.5, 3. , 5.8, 2.2],
[7.6, 3. , 6.6, 2.1],
[4.9, 2.5, 4.5, 1.7],
[7.3, 2.9, 6.3, 1.8],
[6.7, 2.5, 5.8, 1.8],
[7.2, 3.6, 6.1, 2.5],
[6.5, 3.2, 5.1, 2. ],
[6.4, 2.7, 5.3, 1.9],
[6.8, 3. , 5.5, 2.1],
[5.7, 2.5, 5. , 2. ],
[5.8, 2.8, 5.1, 2.4],
[6.4, 3.2, 5.3, 2.3],
[6.5, 3. , 5.5, 1.8],
[7.7, 3.8, 6.7, 2.2],
[7.7, 2.6, 6.9, 2.3],
[6. , 2.2, 5. , 1.5],
[6.9, 3.2, 5.7, 2.3],
[5.6, 2.8, 4.9, 2. ],
[7.7, 2.8, 6.7, 2. ],
[6.3, 2.7, 4.9, 1.8],
[6.7, 3.3, 5.7, 2.1],
[7.2, 3.2, 6. , 1.8],
[6.2, 2.8, 4.8, 1.8],
[6.1, 3. , 4.9, 1.8],
[6.4, 2.8, 5.6, 2.1],
[7.2, 3. , 5.8, 1.6],
[7.4, 2.8, 6.1, 1.9],
[7.9, 3.8, 6.4, 2. ],
[6.4, 2.8, 5.6, 2.2],
[6.3, 2.8, 5.1, 1.5],
[6.1, 2.6, 5.6, 1.4],
[7.7, 3. , 6.1, 2.3],
[6.3, 3.4, 5.6, 2.4],
[6.4, 3.1, 5.5, 1.8],
[6. , 3. , 4.8, 1.8],
[6.9, 3.1, 5.4, 2.1],
[6.7, 3.1, 5.6, 2.4],
[6.9, 3.1, 5.1, 2.3],
[5.8, 2.7, 5.1, 1.9],
[6.8, 3.2, 5.9, 2.3],
[6.7, 3.3, 5.7, 2.5],
[6.7, 3. , 5.2, 2.3],
[6.3, 2.5, 5. , 1.9],
[6.5, 3. , 5.2, 2. ],
[6.2, 3.4, 5.4, 2.3],
[5.9, 3. , 5.1, 1.8]])

  

x1=x[:,0]
x1 array([5.1, 4.9, 4.7, 4.6, 5. , 5.4, 4.6, 5. , 4.4, 4.9, 5.4, 4.8, 4.8,
4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5. ,
5. , 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5. , 5.5, 4.9, 4.4,
5.1, 5. , 4.5, 4.4, 5. , 5.1, 4.8, 5.1, 4.6, 5.3, 5. , 7. , 6.4,
6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5. , 5.9, 6. , 6.1, 5.6,
6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7,
6. , 5.7, 5.5, 5.5, 5.8, 6. , 5.4, 6. , 6.7, 6.3, 5.6, 5.5, 5.5,
6.1, 5.8, 5. , 5.6, 5.7, 5.7, 6.2, 5.1, 5.7, 6.3, 5.8, 7.1, 6.3,
6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5,
7.7, 7.7, 6. , 6.9, 5.6, 7.7, 6.3, 6.7, 7.2, 6.2, 6.1, 6.4, 7.2,
7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6. , 6.9, 6.7, 6.9, 5.8,
6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9])

  

from sklearn.cluster import KMeans
est=KMeans(n_clusters=3)
est.fit(x)
est.cluster_centers_
y=est.predict(x)
y array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2,
2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2,
2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1])

  

import matplotlib.pyplot as plt
plt.scatter(x[:,0],x[:,1],c=y,cmap='rainbow')
plt.show()

  

est1=KMeans(n_clusters=4)
x1=x[:,0].reshape(-1,1)
est1.fit(x1)
y=est1.labels_
plt.scatter(x1,x1)
plt.show()

  

est1=KMeans(n_clusters=4)
x1=x[:,0]
est=KMeans(n_clusters=4)
est.fit(x) KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
n_clusters=4, n_init=10, n_jobs=1, precompute_distances='auto',
random_state=None, tol=0.0001, verbose=0)

  

est1=KMeans(n_clusters=4)
x1=x[:,0].reshape(-1,1)
x1 array([[5.1],
[4.9],
[4.7],
[4.6],
[5. ],
[5.4],
[4.6],
[5. ],
[4.4],
[4.9],
[5.4],
[4.8],
[4.8],
[4.3],
[5.8],
[5.7],
[5.4],
[5.1],
[5.7],
[5.1],
[5.4],
[5.1],
[4.6],
[5.1],
[4.8],
[5. ],
[5. ],
[5.2],
[5.2],
[4.7],
[4.8],
[5.4],
[5.2],
[5.5],
[4.9],
[5. ],
[5.5],
[4.9],
[4.4],
[5.1],
[5. ],
[4.5],
[4.4],
[5. ],
[5.1],
[4.8],
[5.1],
[4.6],
[5.3],
[5. ],
[7. ],
[6.4],
[6.9],
[5.5],
[6.5],
[5.7],
[6.3],
[4.9],
[6.6],
[5.2],
[5. ],
[5.9],
[6. ],
[6.1],
[5.6],
[6.7],
[5.6],
[5.8],
[6.2],
[5.6],
[5.9],
[6.1],
[6.3],
[6.1],
[6.4],
[6.6],
[6.8],
[6.7],
[6. ],
[5.7],
[5.5],
[5.5],
[5.8],
[6. ],
[5.4],
[6. ],
[6.7],
[6.3],
[5.6],
[5.5],
[5.5],
[6.1],
[5.8],
[5. ],
[5.6],
[5.7],
[5.7],
[6.2],
[5.1],
[5.7],
[6.3],
[5.8],
[7.1],
[6.3],
[6.5],
[7.6],
[4.9],
[7.3],
[6.7],
[7.2],
[6.5],
[6.4],
[6.8],
[5.7],
[5.8],
[6.4],
[6.5],
[7.7],
[7.7],
[6. ],
[6.9],
[5.6],
[7.7],
[6.3],
[6.7],
[7.2],
[6.2],
[6.1],
[6.4],
[7.2],
[7.4],
[7.9],
[6.4],
[6.3],
[6.1],
[7.7],
[6.3],
[6.4],
[6. ],
[6.9],
[6.7],
[6.9],
[5.8],
[6.8],
[6.7],
[6.7],
[6.3],
[6.5],
[6.2],
[5.9]])

  

est1=KMeans(n_clusters=4)
x1=x[:,0].reshape(-1,1)
est1=KMeans(n_clusters=4)
est1.fit(x1)
est1.labels_ array([1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 2, 3, 3, 0, 3, 0, 3, 1, 3, 1, 1, 0, 0, 0, 0, 3,
0, 0, 3, 0, 0, 0, 3, 0, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3,
0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 3, 0, 2, 3, 3, 2, 1, 2, 3, 2,
3, 3, 3, 0, 0, 3, 3, 2, 2, 0, 3, 0, 2, 3, 3, 2, 3, 0, 3, 2, 2, 2,
3, 3, 0, 2, 3, 3, 0, 3, 3, 3, 0, 3, 3, 3, 3, 3, 3, 0])

  

1)设定好K的大小,随机选取K个点作为初始中心点;
  (2)计算每个点到这K个中心点的距离大小,选取最近的中心点,划分到以该中心点为中心的集群中去;
  (3)重新计算K个新集群的中心点;
  (4)如果中心点保持不变,则结束K-Means过程。否则,重复进行(2)、(3)步;

  

复制代码
import numpy as np
x = np.random.randint(1,50,[20,1])
y = np.zeros(20)
k = 3
#1) 选取数据空间中的K个对象作为初始中心,每个对象代表一个聚类中心;
def initcen(x,k):
return x[:k]
#2) 对于样本中的数据对象,根据它们与这些聚类中心的欧氏距离,按距离最近的准则将它们分到距离它们最近的聚类中心(最相似)所对应的类;
def nearest(kc,i):
d = abs(kc-i)
w = np.where(d == np.min(d))
return w[0][0] def xclassify(x,y,kc):
for i in range(x.shape[0]):
y[i] = nearest(kc,x[i])
return y #3) 更新聚类中心:将每个类别中所有对象所对应的均值作为该类别的聚类中心,计算目标函数的值; def kcmean(x,y,kc,k):
l = list(kc)
flag = False
for c in range(k):
m = np.where(y ==0)
n = np.mean(x[m])
if l[c] != n:
l[c] = n
flag = True
print(l,flag)
return (np.array(l),flag)
#4) 判断聚类中心和目标函数的值是否发生改变,若不变,则输出结果,若改变,则返回2)
kc = initcen(x,k) flag = True
print(x,y,kc,flag)
while flag:
y = xclassify(x,y,kc)
kc,flag = kcmean(x,y,kc,k)
print(y,kc)
复制代码

  

聚类K-Means的更多相关文章

  1. 软件——机器学习与Python,聚类,K——means

    K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467. ...

  2. KMeans聚类 K值以及初始类簇中心点的选取 转

    本文主要基于Anand Rajaraman和Jeffrey David Ullman合著,王斌翻译的<大数据-互联网大规模数据挖掘与分布式处理>一书. KMeans算法是最常用的聚类算法, ...

  3. 聚类-K均值

    数据来源:http://archive.ics.uci.edu/ml/datasets/seeds 15.26 14.84 0.871 5.763 3.312 2.221 5.22 Kama 14.8 ...

  4. 【机器学习笔记五】聚类 - k均值聚类

    参考资料: [1]Spark Mlib 机器学习实践 [2]机器学习 [3]深入浅出K-means算法  http://www.csdn.net/article/2012-07-03/2807073- ...

  5. 聚类--K均值算法

    import numpy as np from sklearn.datasets import load_iris iris = load_iris() x = iris.data[:,1] y = ...

  6. 第八次作业:聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用

    import numpy as np x = np.random.randint(1,100,[20,1]) y = np.zeros(20) k = 3 def initcenter(x,k): r ...

  7. 聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用

    1.用python实现K均值算法 import numpy as np x = np.random.randint(1,100,20)#产生的20个一到一百的随机整数 y = np.zeros(20) ...

  8. KNN 与 K - Means 算法比较

    KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...

  9. 机器学习方法(七):Kmeans聚类K值如何选,以及数据重抽样方法Bootstrapping

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入.我的博客写一些自己用得到东西,并分享给 ...

  10. kmeans 聚类 k 值优化

    kmeans 中k值一直是个令人头疼的问题,这里提出几种优化策略. 手肘法 核心思想 1. 肉眼评价聚类好坏是看每类样本是否紧凑,称之为聚合程度: 2. 类别数越大,样本划分越精细,聚合程度越高,当类 ...

随机推荐

  1. JIRA日期格式设置

    https://blog.csdn.net/zj911008/article/details/48312927?utm_source=blogxgwz3 https://blog.csdn.net/z ...

  2. Autowried注解和Resource注解的区别

    目录 1.概述 2.Autowried 3.Resource 4.总结 1.概述 在使用Spring框架的过程中, 依赖注入是必须的, 大多时候会使用Autowried注解来进行依赖注入, 但是也可以 ...

  3. GIS 案例教程-蜂窝多边形制作模型

    GIS 案例教程-蜂窝多边形制作模型 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 优点: 拖放式,非编程,复制即用,不用配置. 效率高,非迭代,可以处理大数据. ...

  4. 使用hexo在GitHub上无法上传博客

    原以为是秘钥或者其他错误,后来发现是邮箱设置的问题 在GitHub的你账号网页上右上角,个人的登录退出的位置,找到setting: setting->emails->Keep my ema ...

  5. jenkins登录后页面显示为空的问题

    1.然后再打开一个新的窗口,输入网址http://localhost:8080/jenkins/pluginManager/advanced,输入网址打开后滑动到页面下方,最底下有个[升级站点],把其 ...

  6. Windows内核驱动中操作文件

    本页主题:如何在windows内核驱动中对文件操作,实现对文件的拷贝.粘贴.删除.查询信息等,这是很常用也是很简单的方法. 部分内容参考:http://www.cppblog.com/aurain/a ...

  7. linux命令总结----转载

    1.终端是个奇妙的东西,一开始它的低颜值,高难度可能会令我们灰心气馁. 但是入门之后,你会发现终端命令行是如此强大,简直飞一般的感觉.就是这个feel,倍儿爽~ 享受“弹指间,一切尽在掌握”的感觉. ...

  8. Python校验文件MD5值

    import hashlib import os def GetFileMd5(filename): if not os.path.isfile(filename): return myHash = ...

  9. 再次认识void

    重新认识void 在初学c/c++时感觉void是一个很不起眼的关键字.因为在c++中我使用的还是比较少的.但是到了Linux中,不论是在内核源码中还是在程序编写的过程中有关void与*的组合随处可见 ...

  10. xmal中的渐变

    <LinearGradientBrush> <LinearGradientBrush.GradientStops> <GradientStop Offset=" ...