首先用训练好的模型得到所有测试样本的confidence  score,每一类(如car)的confidence   score保存到一个文件中(如comp1_cls_test_car.txt)。假设共有20个测试样本,每个的id,confidence  score和ground  truth  label如下:

接下来对confidence  score排序,得到:

然后计算precision和recall,这两个标准的定义如下:

圆圈内(true   positives + false  positives)是我们选出的元素,它对应于分类任务中我们取出的结果,比如对测试样本在训练好的car模型上分类,我们想得到top-5的结果,即:

在这个例子中,根据ge_label真实标签,true   positives就是指第4和第2张图片,false   positives就是指第13,19,6张图片。方框内圆圈外的元素(false   negatives和true  negatives)是相对于方框内的元素而言,在这个例子中,是指confidence   score排在top-5之外的元素,即:

其中,false   negatives是指第9,16,7,20张图片,true   negatives是指第1,18,5,15,10,17,12,14,8,11,3张图片。

那么,这个例子中Precision=2/5=40%,意思是对于car这一类别,我们选定了5个样本,其中正确的有2个,即准确率为40%;Recall=2/6=30%,意思是在所有测试样本中,共有6个car,但是因为我们只召回了2个,所以召回率为30%。

实际多类别分类任务中,我们通常不满足只通过top-5来衡量一个模型的好坏,而是需要知道从top-1到top-N(N是所有测试样本个数,本文中为20)对应的precision和recall。显然随着我们选定的样本越来也多,recall一定会越来越高,而precision整体上会呈下降趋势。把recall当成横坐标,precision当成纵坐标,即可得到常用的precision-recall曲线。这个例子的precision-recall曲线如下:

接下来说说AP的计算,此处参考的是PASCAL  VOC  CHALLENGE的计算方法。首先设定一组阈值,[0, 0.1, 0.2, …, 1]。然后对于recall大于每一个阈值(比如recall>0.3),我们都会得到一个对应的最大precision。这样,我们就计算出了11个precision。AP即为这11个precision的平均值。这种方法英文叫做11-point interpolated average precision。​

当然PASCAL VOC CHALLENGE自2010年后就换了另一种计算方法。新的计算方法假设这N个样本中有M个正例,那么我们会得到M个recall值(1/M, 2/M, ..., M/M),对于每个recall值r,我们可以计算出对应(r' > r)的最大precision,然后对这M个precision值取平均即得到最后的AP值。计算方法如下:

相应的Precision-Recall曲线(这条曲线是单调递减的)如下:​

对每个recall对应的precision求均值就得到所谓的average precision,即AP。这样就得到了对应一个类(分类器)的average precision,它表示的是该模型在某个类别上的好坏,如果要求模型在所有类别上的好坏,就求所有类别对应的AP的均值,即所谓的mAP。

参考链接:http://blog.sina.com.cn/s/blog_9db078090102whzw.html

召回率,精确率,mAP如何计算的更多相关文章

  1. 机器学习 F1-Score 精确率 - P 准确率 -Acc 召回率 - R

    准确率 召回率 精确率 : 准确率->accuracy, 精确率->precision. 召回率-> recall. 三者很像,但是并不同,简单来说三者的目的对象并不相同. 大多时候 ...

  2. 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure

    yu Code 15 Comments  机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accu ...

  3. 精确率与召回率,RoC曲线与PR曲线

    在机器学习的算法评估中,尤其是分类算法评估中,我们经常听到精确率(precision)与召回率(recall),RoC曲线与PR曲线这些概念,那这些概念到底有什么用处呢? 首先,我们需要搞清楚几个拗口 ...

  4. Recall(召回率)and Precision(精确率)

    ◆版权声明:本文出自胖喵~的博客,转载必须注明出处. 转载请注明出处:http://www.cnblogs.com/by-dream/p/7668501.html 前言 机器学习中经过听到" ...

  5. 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure(对于二分类问题)

    首先我们可以计算准确率(accuracy),其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比.也就是损失函数是0-1损失时测试数据集上的准确率. 下面在介绍时使用一下例子: 一个 ...

  6. 混淆矩阵、准确率、精确率/查准率、召回率/查全率、F1值、ROC曲线的AUC值

    准确率.精确率(查准率).召回率(查全率).F1值.ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前 ...

  7. 精确率、准确率、召回率和F1值

    当我们训练一个分类模型,总要有一些指标来衡量这个模型的优劣.一般可以用如题的指标来对预测数据做评估,同时对模型进行评估. 首先先理解一下混淆矩阵,混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用 ...

  8. 精确率、召回率、准确率与ROC曲线

    精确率表示的是预测为某类样本(例如正样本)中有多少是真正的该类样本,一般用来评价分类任务模型. 比如对于一个分类模型,预测结果为A类的所有样本中包含A0个真正的A样本,和A1个不是A样本的其他类样本, ...

  9. (转载)准确率(accuracy),精确率(Precision),召回率(Recall)和综合评价指标(F1-Measure )-绝对让你完全搞懂这些概念

    自然语言处理(ML),机器学习(NLP),信息检索(IR)等领域,评估(evaluation)是一个必要的工作,而其评价指标往往有如下几点:准确率(accuracy),精确率(Precision),召 ...

  10. 你的GAN训练得如何--GAN 的召回率(多样性)和精确率(图像质量)方法评估

    生成对抗网络(GAN)是当今最流行的图像生成方法之一,但评估和比较 GAN 产生的图像却极具挑战性.之前许多针对 GAN 合成图像的研究都只用了主观视觉评估,一些定量标准直到最近才开始出现.本文认为现 ...

随机推荐

  1. java.sql.SQLException: Field 'id' doesn't have a default value

    1:id 列要设置成自增,自动赋值 java.sql.SQLException: Field 'id' doesn't have a default value at com.mysql.jdbc.S ...

  2. OO学期总结

    一.测试与正确性论证差异对比 测试,顾名思义,就是用一些有意义或无意义的输入去检测程序的正确性或鲁棒性,因其直观明了所以在写简单的程序时我们能迅速找出bug并加以解决.并且,这种方式是绝对客观的,只要 ...

  3. 安装composer Failed to decode zlib stream 问题解决方法

    https://getcomposer.org/download/ 页面下载最新版本 composer.phar 放到php.exe 页面下.创建一个.bat文件,存入下面内容 @ECHO OFF p ...

  4. 冒泡排序——JavaScript实现

    解析:1.比较相邻的两个元素,如果前一个比后一个大,则交换位置. 2.第一轮的时候最后一个元素应该是最大的一个. 3.按照步骤一的方法进行相邻两个元素的比较,这个时候由于最后一个元素已经是最大的了,所 ...

  5. H5新特性---Web Worker---Web Stroage

    今天的目标 3.1:h5新特性八--Web Worker---代码就3行 程序:program 存储在外存(磁盘)中代码 进程:Process/Task 将程序调用内存中,分配空间 线程:Thread ...

  6. monkey测试样例

    我们通过在CMD窗口中执行: adb shell monkey {+命令参数}来进行Monkey测试了.首先,我们准备了一个有bug的项目CityWeather:通过测试这个项目(源码在附件文件夹中) ...

  7. ThinkPhp5 出现访问出现 No input file specified. 问题

    今天复习一下ThinkPhp5,在官网下载了核心版,windows下配置了虚拟域名之后出现了神奇的现象 如下图 直接访问域名能访问到index模块下的index控制器下的index方法 但是我输入完整 ...

  8. Vue 获取登录用户名

    本来是打算登录的时候把用户名传过去,试了几次都没成功,然后改成用cookie保存用户名,然后在读取就行了, 登录时候设置cookie setCookie(c_name,c_pwd,exdays) { ...

  9. dede网站安全要做的四件事

    1,把安装install的文件夹删除:2,关闭member系统,禁止member文件写入:3,把data文件外移到网站根目录之外:4,把included和plus目录的写入权限关闭. 转载自:http ...

  10. 安装 redis 拓展

    PHP API 20121113 PHP Extension 20121212 Zend Extension 220121212 Zend Extension Build API220121212,T ...