spark对kudu表的创建

定义kudu的表需要分成5个步骤:

1:提供表名

2:提供schema

3:提供主键

4:定义重要选项;例如:定义分区的schema

5:调用create Table api

import org.apache.kudu.client.CreateTableOptions
import org.apache.kudu.spark.kudu._
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType} import collection.JavaConverters._
/**
* Created by angel;
*/
object CURD {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setAppName("AcctfileProcess")
//设置Master_IP并设置spark参数
.setMaster("local")
.set("spark.worker.timeout", "500")
.set("spark.cores.max", "10")
.set("spark.rpc.askTimeout", "600s")
.set("spark.network.timeout", "600s")
.set("spark.task.maxFailures", "1")
.set("spark.speculationfalse", "false")
.set("spark.driver.allowMultipleContexts", "true")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
val sparkContext = SparkContext.getOrCreate(sparkConf)
val sqlContext = SparkSession.builder().config(sparkConf).getOrCreate().sqlContext
//使用spark创建kudu表
val kuduContext = new KuduContext("hadoop01:7051,hadoop02:7051,hadoop03:7051", sqlContext.sparkContext)
//TODO 1:定义表名
val kuduTableName = "spark_kudu_tbl"
//TODO 2:定义schema
val schema = StructType(
StructField("CompanyId", StringType, false) ::
StructField("name", StringType, false) ::
StructField("sex", StringType, true) ::
StructField("age", IntegerType, true) :: Nil
)
////TODO 3:定义表的主键
val kuduTablePrimaryKey = Seq("CompanyId")
//TODO 4:定义分区的schema
val kuduTableOptions = new CreateTableOptions()
kuduTableOptions.
setRangePartitionColumns(List("name").asJava).
setNumReplicas(3)
//TODO 5:调用create Table api
kuduContext.createTable(
kuduTableName,schema,kuduTablePrimaryKey, kuduTableOptions)
}
}

定义表时要注意的一个项目是Kudu表选项值。您会注意到在指定组成范围分区列的列名列表时我们调用“asJava”方法。这是因为在这里,我们调用了Kudu Java客户端本身,它需要Java对象(即java.util.List)而不是Scala的List对象;(要使“asJava”方法可用,请记住导入JavaConverters库。)

创建表后,通过将浏览器指向http:// <master-hostname>:8051 / tables来查看Kudu主UI可以找到创建的表,通过单击表ID,能够看到表模式和分区信息。

(点击Table id 可以观察到表的schema等信息)

spark删除kudu表

object DropTable {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setAppName("AcctfileProcess")
//设置Master_IP并设置spark参数
.setMaster("local")
.set("spark.worker.timeout", "500")
.set("spark.cores.max", "10")
.set("spark.rpc.askTimeout", "600s")
.set("spark.network.timeout", "600s")
.set("spark.task.maxFailures", "1")
.set("spark.speculationfalse", "false")
.set("spark.driver.allowMultipleContexts", "true")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
val sparkContext = SparkContext.getOrCreate(sparkConf)
val sqlContext = SparkSession.builder().config(sparkConf).getOrCreate().sqlContext
//使用spark创建kudu表
val kuduContext = new KuduContext("hadoop01:7051,hadoop02:7051,hadoop03:7051", sqlContext.sparkContext) // TODO 指定要删除的表名称
var kuduTableName = "spark_kudu_tbl" // TODO 检查表如果存在,那么删除表
if (kuduContext.tableExists(kuduTableName)) {
kuduContext.deleteTable(kuduTableName)
}
}
}

使用spark集成kudu做DDL的更多相关文章

  1. spark操作kudu之DML操作

    Kudu支持许多DML类型的操作,其中一些操作包含在Spark on Kudu集成 包括: INSERT - 将DataFrame的行插入Kudu表.请注意,虽然API完全支持INSERT,但不鼓励在 ...

  2. 使用spark操作kudu

    Spark与KUDU集成支持: DDL操作(创建/删除) 本地Kudu RDD Native Kudu数据源,用于DataFrame集成 从kudu读取数据 从Kudu执行插入/更新/ upsert ...

  3. Spark:利用Eclipse构建Spark集成开发环境

    前一篇文章“Apache Spark学习:将Spark部署到Hadoop 2.2.0上”介绍了如何使用Maven编译生成可直接运行在Hadoop 2.2.0上的Spark jar包,而本文则在此基础上 ...

  4. spark集成hive遭遇mysql check失败的问题

    问题: spark集成hive,启动spark-shell或者spark-sql的时候,报错: INFO MetaStoreDirectSql: MySQL check failed, assumin ...

  5. spark操作Kudu之写 - 使用DataFrame API

    在通过DataFrame API编写时,目前只支持一种模式“append”.尚未实现的“覆盖”模式 import org.apache.kudu.spark.kudu._ import org.apa ...

  6. spark操作Kudu之读 - 使用DataFrame API

    虽然我们可以通过上面显示的KuduContext执行大量操作,但我们还可以直接从默认数据源本身调用读/写API. 要设置读取,我们需要为Kudu表指定选项,命名我们要读取的表以及为表提供服务的Kudu ...

  7. Spring集成shiro做登陆认证

    一.背景 其实很早的时候,就在项目中有使用到shiro做登陆认证,直到今天才又想起来这茬,自己抽空搭了一个spring+springmvc+mybatis和shiro进行集成的种子项目,当然里面还有很 ...

  8. Eclipse集成Git做团队开发:分支管理

    在日常开发工作中,我们通常使用版本控制软件管理团队的源代码,常用的SVN.Git.与SVN相比,Git有分支的概念,可以从主分支创建开发分支,在开发分支测试没有问题之后,再合并到主分支上去,从而避免了 ...

  9. Eclipse集成Git做团队开发:代码管理

    在日常开发工作中,我们通常使用版本控制软件管理团队的源代码,常用的SVN.Git.与SVN相比,Git有分支的概念,可以从主分支创建开发分支,在开发分支测试没有问题之后,再合并到主分支上去,从而避免了 ...

随机推荐

  1. var_export 掉咋天

    var_export     文件缓存经常使用    输出或返回一个变量的字符串表示 /** * 写入缓存 * * @param string $id * @param mixed $data * @ ...

  2. 前端 ---- jQuery的ajax

    14-jQuery的ajax   什么是ajax AJAX = 异步的javascript和XML(Asynchronous Javascript and XML) 简言之,在不重载整个网页的情况下, ...

  3. ubuntu 安装配置 mysql

    注:上一篇内容是直接使用虚拟机配置好的mysql数据库, 阿里云服务器的默认是没有mysql的. 下载安装 mysql: sudo apt-get update sudo apt-get instal ...

  4. mtu简单说明

    总结:本地的mtu值==网络设备的mtu值是最优的,一般本地和网络设备的默认值都是1500(字节),没什么特殊需求,尽量不要修改 一.什么是 MTU 值   1 从字面上来说,MTU 是英文 Maxi ...

  5. C# 如何获取自定义的config中节点的值,并修改节点的值

    现定义一个方法 DIYConfigHelper.cs using System; using System.Xml; using System.Configuration; using System. ...

  6. C# web Api ajax发送json对象到action中

    直接上代码: 1.Product实体

  7. Java对象之间的深度复制拷贝

    /* * Copyright (c) 1995, 2011, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETA ...

  8. Confluence 6 识别系统属性

    Confluence 支持一些可以从 Java 系统属性中配置的配置参数和调试(debugging )设置.系统属性通常是使用 -D 为参数选项,这个选项是 Confluence 在运行后设置到 JV ...

  9. Confluence 6 MySQL 3.x 字符集编码问题

    MySQL 3.x is 已知在大写和小写转换的时候有些问题(non-ASCII). 问题诊断 请按照 Troubleshooting Character Encodings 页面中的内容对问题进行诊 ...

  10. Confluence 6 使用 JConsole 监控本地 Confluence

    如果你遇到了一些特定的问题,或者你仅仅是希望在一个很短的时间内监控你 Confluence 的运行,你可以使用本地监控.本地监控将会对你的服务器性能产生影响,所以我们并不推荐你使用本地监控来长时间的监 ...