Medium!

题目描述:

根据一棵树的前序遍历与中序遍历构造二叉树。

注意:
你可以假设树中没有重复的元素。

例如,给出

前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]

返回如下的二叉树:

    3
/ \
9 20
/ \
15 7

解题思路:

这道题要求用先序和中序遍历来建立二叉树,由于先序的顺序的第一个肯定是根,所以原二叉树的根节点可以知道,题目中给了一个很关键的条件就是树中没有相同元素,有了这个条件我们就可以在中序遍历中也定位出根节点的位置,并以根节点的位置将中序遍历拆分为左右两个部分,分别对其递归调用原函数。

C++解法一:

 /**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {
return buildTree(preorder, , preorder.size() - , inorder, , inorder.size() - );
}
TreeNode *buildTree(vector<int> &preorder, int pLeft, int pRight, vector<int> &inorder, int iLeft, int iRight) {
if (pLeft > pRight || iLeft > iRight) return NULL;
int i = ;
for (i = iLeft; i <= iRight; ++i) {
if (preorder[pLeft] == inorder[i]) break;
}
TreeNode *cur = new TreeNode(preorder[pLeft]);
cur->left = buildTree(preorder, pLeft + , pLeft + i - iLeft, inorder, iLeft, i - );
cur->right = buildTree(preorder, pLeft + i - iLeft + , pRight, inorder, i + , iRight);
return cur;
}
};

我们下面来看一个例子, 某一二叉树的中序和后序遍历分别为:

Preorder:    5  4  11  8  13  9

Inorder:    11  4  5  13  8  9

  4  11  8  13  9      =>          5

11  4    13  8  9                /  \

4  11        13  9      =>         5

11       13    9                  /  \

                             4   8

11       13    9        =>         5

11       13    9                    /  \

                             4   8

                            /    /     \

                           11    13    9

做完这道题后,大多人可能会有个疑问,怎么没有由先序和后序遍历建立二叉树呢,这是因为先序和后序遍历不能唯一的确定一个二叉树,比如下面五棵树:

1      preorder:    1  2  3
   / \       inorder:       2  1  3
 2    3       postorder:   2  3  1

1       preorder:     1  2  3
      /       inorder:       3  2  1
    2          postorder:   3  2  1
   /
 3

1        preorder:    1  2  3
      /        inorder:      2  3  1
    2       postorder:  3  2  1
      \
       3

1         preorder:    1  2  3
         \        inorder:      1  3  2
          2      postorder:  3  2  1
         /
       3

1         preorder:    1  2  3
         \      inorder:      1  2  3
          2      postorder:  3  2  1
            \
    3

从上面我们可以看出,对于先序遍历都为1 2 3的五棵二叉树,它们的中序遍历都不相同,而它们的后序遍历却有相同的,所以只有和中序遍历一起才能唯一的确定一棵二叉树。

LeetCode(105):从前序与中序遍历序列构造二叉树的更多相关文章

  1. Java实现 LeetCode 105 从前序与中序遍历序列构造二叉树

    105. 从前序与中序遍历序列构造二叉树 根据一棵树的前序遍历与中序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [3,9,20,15,7] 中 ...

  2. [LeetCode]105. 从前序与中序遍历序列构造二叉树(递归)、108. 将有序数组转换为二叉搜索树(递归、二分)

    题目 05. 从前序与中序遍历序列构造二叉树 根据一棵树的前序遍历与中序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 题解 使用HashMap记录当前子树根节点在中序遍历中的位置,方便每次 ...

  3. 【leetcode 105. 从前序与中序遍历序列构造二叉树】解题报告

    前往 中序,后序遍历构造二叉树, 中序,前序遍历构造二叉树 TreeNode* build(vector<int>& preorder, int l1, int r1, vecto ...

  4. LeetCode 105. 从前序与中序遍历序列构造二叉树(Construct Binary Tree from Preorder and Inorder Traversal)

    题目描述 根据一棵树的前序遍历与中序遍历构造二叉树. 注意:你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [3,9,20,15,7] 中序遍历 inorder = [9, ...

  5. Leetcode 105. 从前序与中序遍历序列构造二叉树

    题目链接 题目描述 根据一棵树的前序遍历与中序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [3,9,20,15,7] 中序遍历 inorder ...

  6. leetcode 105从前序与中序遍历序列构造二叉树

    方法一:直接使用复制的数据递归:O(n)时间,O(n)空间,不计算递归栈空间: /** * Definition for a binary tree node. * struct TreeNode { ...

  7. Leetcode:105. 从前序与中序遍历序列构造二叉树&106. 从中序与后序遍历序列构造二叉树

    Leetcode:105. 从前序与中序遍历序列构造二叉树&106. 从中序与后序遍历序列构造二叉树 Leetcode:105. 从前序与中序遍历序列构造二叉树&106. 从中序与后序 ...

  8. LeetCode 中级 - 从前序与中序遍历序列构造二叉树(105)

    一个前序遍历序列和一个中序遍历序列可以确定一颗唯一的二叉树. 根据前序遍历的特点, 知前序序列(PreSequence)的首个元素(PreSequence[0])为二叉树的根(root),  然后在中 ...

  9. 【LeetCode】105#从前序与中序遍历序列构造二叉树

    题目描述 根据一棵树的前序遍历与中序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [3,9,20,15,7] 中序遍历 inorder = [9 ...

  10. 【2】【leetcode-105,106】 从前序与中序遍历序列构造二叉树,从中序与后序遍历序列构造二叉树

    105. 从前序与中序遍历序列构造二叉树 (没思路,典型记住思路好做) 根据一棵树的前序遍历与中序遍历构造二叉树. 注意:你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [ ...

随机推荐

  1. git 重命名 origin

    git remote rename origin old-origin git remote add origin https://gitlab.com/wuxianqiang/my-project. ...

  2. python函数解释

    实现某个功能的一些代码提高代码的复用性函数必须被调用才会执行函数里面定义的变量都叫局部变量,只要一出了函数就不能用了函数里面如果调用时需要拿到结果但是最后没写return(不必须写,如读取文件时就需要 ...

  3. vue组件导航栏动态添加class

  4. Maven 传递依赖冲突解决(了解)

    1 传递依赖冲突解决(了解) 传递依赖:A(项目)依赖B,B依赖C(1.1版本),B是A的直接依赖,C就是A的传递依赖 导入依赖D,D依赖C(1.2版本) 1.1 Maven自己调解原则 1.1.1  ...

  5. linux 工具学习网站

    推荐一个很不错的linux工具学习网站; 对于一个开发人员来说,我觉得掌握这些工具对于基于linux的应用开发来说事半功倍. http://linuxtools-rst.readthedocs.io/ ...

  6. 在Linux环境下使用Jexus部署ASP.NET Core

    关于如何在Linux中添加ASP.NET Core运行时环境请参考我的上一篇文章,本文章将不再做赘述. 本文章运行环境如下:  (1) 安装独立版Jexus 本教程安装的是独立版的Jexus,独立版的 ...

  7. ES6学习笔记八(module模块export)

    1.导出export,导入import组合 知识点1:导出export lesson2.js export let A=; export function test(){ console.log('t ...

  8. python3+selenium入门11-窗口切换

    在打开新的浏览器窗口时,如果要定位新窗口的元素,需要先切换到这个新打开的窗口中,才能定位到该窗口下的元素. current_window_handle:获取当前句柄.可以把句柄理解成窗口的身份证 wi ...

  9. 使用位图字体工具BMFont从图片生成自定义字体

    转载自:http://blog.csdn.net/keshuiyun/article/details/9960667 BMFont下载地址: http://www.angelcode.com/prod ...

  10. thinkphp提示不支持mysqli或者mysql

    确认php是否安装了php-mysql组件,nginx或apache的php服务进程