洛谷p1586四方定理题解
这个题的本质是动态规划中的背包问题。
为什么会想到背包呢。
因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能。我们可以把一个数的代价当成这个数的平方,价值就是一个方案数。由于这个数可以取无数次所以这个背包问题即为一个完全背包。 因此我们可以预处理出从1到数据范围的所有数的方案。
这个过程也是一个DP的过程。我们先把1到sqrt(数据范围)的数的平方数存到data数组中。然后再套用背包公式
因为最大的平方数是32768.所以最大的数是181.因此我们可以想象成共有181个物品。每个人所占的价值为data[i]。因为是四个二次方数。我们可设一个二维数组dp[i][j]表示数i在取j个平方数的时候的方案数。
因此我们可以得到状态转移方程。
for(int j=1;j<=181;j++)
for(int k=1;k<=32786;k++)
for(int i=1;i<=4;i++)
dp[当前的数][当前取平方数的个数]+=dp[当前的数-data[i]][当前取平方数的个数-1]
(dp[k][i]+=dp[k-data[i]][i-1];)
预处理完之后,这个题就结束了。
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int t,data[],sum,dp[][];
int main()
{
dp[][]=;
for(int i=;i<=;i++)
data[i]=i*i;
for(int i=;i<=;i++)
for(int j=data[i];j<=;j++)
for(int k=;k<=;k++)
{
dp[j][k]+=dp[j-data[i]][k-];
}
scanf("%d",&t);
while(t--)
{
int x,ans=;
scanf("%d",&x);
for(int i=;i<=;i++)
{
ans+=dp[x][i];
}
printf("%d\n",ans);
}
}
洛谷p1586四方定理题解的更多相关文章
- 洛谷——P1586 四方定理
P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然 ...
- 洛谷 P1586 四方定理
P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+2 ...
- 洛谷P1586 四方定理
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...
- 洛谷 P3834 卢卡斯定理 题解
题面 首先你需要知道这条定理: C(n,m)=C(n%p,m%p)*C(n/p,m/p); 这样可以递归实现: 注意坑点:是C(n+m,m),并不是C(n,m); #include <bits/ ...
- 洛谷P2832 行路难 分析+题解代码【玄学最短路】
洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...
- 【洛谷P3960】列队题解
[洛谷P3960]列队题解 题目链接 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有 n×m ...
- 洛谷P2312 解方程题解
洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...
- 洛谷P1577 切绳子题解
洛谷P1577 切绳子题解 题目描述 有N条绳子,它们的长度分别为Li.如果从它们中切割出K条长度相同的 绳子,这K条绳子每条最长能有多长?答案保留到小数点后2位(直接舍掉2为后的小数). 输入输出格 ...
- 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)
洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...
随机推荐
- springmvc的@ResponseBody报错
错误:差不多就是下面的格式 原因:你可能返回的类型是这样的List<School>而school类中可能包含Class类或者Teacher类,就是包含对象. 这样的话jackson是不能帮 ...
- FPGA中边沿触发和电平触发
边沿触发和电平触发基本就是触发器和锁存器的区别: 触发器是边沿触发,只有当时钟上升(或下降)的一瞬间,触发器会读取并锁存输入信号.输出信号仅在时钟信号上升(或下降)的一瞬间会发生变化. 锁存器是电 ...
- mysql面试题目1
有这样一个成绩表,学生A,B,C,三个人,考试科目分别为C(chinese),M(math),E(english) 求三门课成绩都大于80分的那个学生姓名: 即查询的方法可分为俩种:select na ...
- Springboot通过cors解决跨域问题(解决spring security oath2的/oauth/token跨域问题)
@Bean public CorsFilter corsFilter() { final UrlBasedCorsConfigurationSource source = new UrlBasedCo ...
- net core 小坑杂记之配置文件读取(不定期更新)
其实很早就想写了,原想等积累差不多了再写的,但是发现遇到一个当时记下效果会比较好,所以就不定期更新这个系列了,后面获取会整个整理一下. 此篇记载net core入门时踩的一些坑,网上教程太少了,也不规 ...
- jmeter接口测试------基础笔记
1.postman发送json格式的post请求,直接放链接 row里面body放请求参数,得到请求结果 2.jmeter请求json时需要注意在请求前创建http信息头管理器,然后信息头添加一条名称 ...
- vue实现双向数据绑定之Object.defineProperty()篇
前言 vue.js中使用ES5的Object.defineProperty()实现数据的双向绑定 Object.defineProperty()原理 Object.defineProperty()可以 ...
- ssm项目跨域访问
最近使用ssm开发了一个项目,为了项目的开发速度,采用的是前后端同时开发,所以前端文件没有集成在项目中,最后在调试时涉及到了跨域.跨域的解决方法很多,我采用的是最简单的一种,代码如下: 新建一个过滤器 ...
- [转帖]一个FORK的面试题
一个FORK的面试题 https://coolshell.cn 搞不懂 fork 的含义. Linux 里面的线程不是教科书上面的标准的线程 好像用 父子进程来进行 模拟线程的处理 父子线程应该共享 ...
- POI解析Excel代码
// 批量区域数据导入 @Action(value = "area_batchImport") public String batchImport() throws IOExcep ...