题目

这个题的本质是动态规划中的背包问题。

为什么会想到背包呢。

因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能。我们可以把一个数的代价当成这个数的平方,价值就是一个方案数。由于这个数可以取无数次所以这个背包问题即为一个完全背包。  因此我们可以预处理出从1到数据范围的所有数的方案。

这个过程也是一个DP的过程。我们先把1到sqrt(数据范围)的数的平方数存到data数组中。然后再套用背包公式

因为最大的平方数是32768.所以最大的数是181.因此我们可以想象成共有181个物品。每个人所占的价值为data[i]。因为是四个二次方数。我们可设一个二维数组dp[i][j]表示数i在取j个平方数的时候的方案数。

因此我们可以得到状态转移方程。

for(int j=1;j<=181;j++)

for(int k=1;k<=32786;k++)

for(int i=1;i<=4;i++)

dp[当前的数][当前取平方数的个数]+=dp[当前的数-data[i]][当前取平方数的个数-1]

(dp[k][i]+=dp[k-data[i]][i-1];)

预处理完之后,这个题就结束了。

代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int t,data[],sum,dp[][];
int main()
{
dp[][]=;
for(int i=;i<=;i++)
data[i]=i*i;
for(int i=;i<=;i++)
for(int j=data[i];j<=;j++)
for(int k=;k<=;k++)
{
dp[j][k]+=dp[j-data[i]][k-];
}
scanf("%d",&t);
while(t--)
{
int x,ans=;
scanf("%d",&x);
for(int i=;i<=;i++)
{
ans+=dp[x][i];
}
printf("%d\n",ans);
}
}

洛谷p1586四方定理题解的更多相关文章

  1. 洛谷——P1586 四方定理

    P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然 ...

  2. 洛谷 P1586 四方定理

    P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=1​2​​+2​2​​+2​ ...

  3. 洛谷P1586 四方定理

    题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...

  4. 洛谷 P3834 卢卡斯定理 题解

    题面 首先你需要知道这条定理: C(n,m)=C(n%p,m%p)*C(n/p,m/p); 这样可以递归实现: 注意坑点:是C(n+m,m),并不是C(n,m); #include <bits/ ...

  5. 洛谷P2832 行路难 分析+题解代码【玄学最短路】

    洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...

  6. 【洛谷P3960】列队题解

    [洛谷P3960]列队题解 题目链接 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有 n×m ...

  7. 洛谷P2312 解方程题解

    洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...

  8. 洛谷P1577 切绳子题解

    洛谷P1577 切绳子题解 题目描述 有N条绳子,它们的长度分别为Li.如果从它们中切割出K条长度相同的 绳子,这K条绳子每条最长能有多长?答案保留到小数点后2位(直接舍掉2为后的小数). 输入输出格 ...

  9. 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)

    洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...

随机推荐

  1. PM2用法简介

    简介 PM2是node进程管理工具,可以利用它来简化很多node应用管理的繁琐任务,如性能监控.自动重启.负载均衡等,而且使用非常简单.引用 全局安装 sudo npm install pm2@lat ...

  2. Node 系列之path模块

    //引用该模块 var path = require("path"); 1.路径解析,得到规范化的路径格式 //对window系统,目录分隔为'\', 对于UNIX系统,分隔符为' ...

  3. Python-类与对象

    类与对象的概念 类即类别.种类,是面向对象设计最重要的概念,从一小节我们得知对象是特征与技能的结合体,而类则是一系列对象相似的特征与技能的结合体. 那么问题来了,先有的一个个具体存在的对象(比如一个具 ...

  4. SpringCloud微服务架构分布式组件如何共享session对象

    一.简单做一个背景说明1.为说明问题,本文简单微服务架构示例如下 2.组件说明分布式架构,每个组件都是集群或者主备.具体说明如下:zuul service:网关,API调用都走zuul service ...

  5. Spring LocalVariableTableParameterNameDiscoverer获取方法的参数名

    Spring LocalVariableTableParameterNameDiscoverer获取方法的参数名 问题:Java.lang.reflect 包中提供了很多方法,获取所有的方法,获取所有 ...

  6. linux中根据名称kill进程

    shell函数如下: # kill processes by name kbn() { line=`ps -a | grep $1` arr=($line) for((i=0;i<${#arr[ ...

  7. 【问题解决方案】之 jmeter启动报错:Not able to find Java executable or version. Please check your Java installation

    故事发生在云计算实验课上-- ** 故事发生在云计算实验课上-- Step 1 在Xshell中登录自己的cloud虚拟机后,<sudo su ->切换到root用户 Step 2 < ...

  8. 给input标签添加默认提示文字

    <input name="username" placeholder="请输入用户名" /> placeholder = "提示文字&qu ...

  9. 解决ERROR 1130: Host '192.168.11.1' is not allowed to connect to this MySQL

    使用navicat进行远程登录MySQL时,报出 ERROR 1130: Host '192.168.11.1' is not allowed to connect to this MySQL  se ...

  10. python爬虫之git的使用(coding.net的使用)

    1.注册coding.net账号,然后登陆. 2.创建项目 套路和github都一样. 1.1.我们在远程仓库上创建了一个仓库,这样的话,我们需要在本地随便建立一个文件普通文件夹,进去以后,执行git ...