题目描述

有 n 种数字,第 i 种数字是 ai、有 bi 个,权值是 ci。
若两个数字 ai、aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数,
那么这两个数字可以配对,并获得 ci×cj 的价值。
一个数字只能参与一次配对,可以不参与配对。
在获得的价值总和不小于 0 的前提下,求最多进行多少次配对。

输入

第一行一个整数 n。
第二行 n 个整数 a1、a2、……、an。
第三行 n 个整数 b1、b2、……、bn。
第四行 n 个整数 c1、c2、……、cn。

输出

一行一个数,最多进行多少次配对

样例输入

3
2 4 8
2 200 7
-1 -2 1

样例输出

4

提示

n≤200,ai≤10^9,bi≤10^5,∣ci∣≤10^5

有数量上限、有价值,显然费用流,因为题目要求费用不小于$0$,所以用最大费用最大流。将每个点拆成两个点$i$和$i'$,分别与源点和汇点连边,流量为$b[i]$、费用为$0$。枚举任意两个数判断是否能匹配。因为$i$与$j$能匹配,$j$就能与$i$匹配,所以将$i$与$j'$连边、$j$与$i'$连边,流量为$INF$、费用为$-c[i]*c[j]$(因为跑最大费用最大流,边权取反)。每次$SPFA$找到一条增广路,如果加上之后答案满足要求就继续增广,否则就停止。因为一对数的匹配算了两次,所以最后答案除$2$即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define INF 1000000000000000ll
#define inf 1000000000
using namespace std;
int head[1000];
int next[100000];
int to[100000];
ll v[100000];
int c[100000];
int f[1000];
int from[100000];
int tot=1;
int S,T;
ll ans;
int n;
int A[300];
int B[300];
int C[300];
queue<int>q;
int vis[1000];
ll d[1000];
int maxflow;
void add(int x,int y,ll z,int w)
{
next[++tot]=head[x];
head[x]=tot;
to[tot]=y;
v[tot]=z;
c[tot]=w;
from[tot]=x;
next[++tot]=head[y];
head[y]=tot;
to[tot]=x;
v[tot]=-z;
c[tot]=0;
from[tot]=y;
}
bool result()
{
int now=T;
int flow=inf;
while(now!=S)
{
flow=min(flow,c[f[now]]);
now=from[f[now]];
}
if(ans+d[T]*flow<=0)
{
ans+=d[T]*flow;
maxflow+=flow;
}
else
{
maxflow+=fabs(ans)/fabs(d[T]);
return 1;
}
now=T;
while(now!=S)
{
c[f[now]]-=flow;
c[f[now]^1]+=flow;
now=from[f[now]];
}
return 0;
}
bool SPFA()
{
for(int i=1;i<=T;i++)
{
d[i]=INF;
}
d[S]=0;
q.push(S);
vis[S]=1;
while(!q.empty())
{
int now=q.front();
q.pop();
vis[now]=0;
for(int i=head[now];i;i=next[i])
{
if(!c[i])
{
continue;
}
if(d[to[i]]>d[now]+v[i])
{
d[to[i]]=d[now]+v[i];
f[to[i]]=i;
if(!vis[to[i]])
{
q.push(to[i]);
vis[to[i]]=1;
}
}
}
}
return d[T]!=INF;
}
void find_max()
{
while(SPFA())
{
if(result())
{
break;
}
}
}
bool check(int x,int y)
{
if(x<y)
{
swap(x,y);
}
if(x%y)
{
return false;
}
int d=x/y;
for(int i=2;i*i<=d;i++)
{
if(d%i==0)
{
return false;
}
}
return true;
}
int main()
{
scanf("%d",&n);
S=2*n+1,T=S+1;
for(int i=1;i<=n;i++)
{
scanf("%d",&A[i]);
}
for(int i=1;i<=n;i++)
{
scanf("%d",&B[i]);
add(S,i,0,B[i]);
add(i+n,T,0,B[i]);
}
for(int i=1;i<=n;i++)
{
scanf("%d",&C[i]);
}
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;j++)
{
if(check(A[i],A[j]))
{
add(i,n+j,-1ll*C[i]*C[j],1<<30);
add(j,n+i,-1ll*C[i]*C[j],1<<30);
}
}
}
find_max();
printf("%d",maxflow/2);
}

BZOJ4514[Sdoi2016]数字配对——最大费用最大流的更多相关文章

  1. 【BZOJ-4514】数字配对 最大费用最大流 + 质因数分解 + 二分图 + 贪心 + 线性筛

    4514: [Sdoi2016]数字配对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 726  Solved: 309[Submit][Status ...

  2. BZOJ4514 [Sdoi2016]数字配对 【费用流】

    题目 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×c ...

  3. bzoj4514: [Sdoi2016]数字配对(费用流)

    传送门 ps:费用流增广的时候费用和流量打反了……调了一个多小时 每个数只能参与一次配对,那么这就是一个匹配嘛 我们先把每个数分解质因数,记质因子总个数为$cnt_i$,那如果$a_i/a_j$是质数 ...

  4. 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流

    [bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...

  5. BZOJ4514——[Sdoi2016]数字配对

    有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的 ...

  6. bzoj4514 [Sdoi2016]数字配对

    Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...

  7. bzoj4514: [Sdoi2016]数字配对--费用流

    看了一眼题目&数据范围,觉得应该是带下界的费用流 原来想拆点变成二分图,能配对的连边,跑二分图,可行性未知 后来看到另外一种解法.. 符合匹配要求的数要满足:质因子的个数相差为1,且两者可整除 ...

  8. 【BZOJ4514】数字配对(费用流)

    题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci× ...

  9. [SDOI2016]数字配对(费用流+贪心+trick)

    重点是如何找到可以配对的\(a[i]\)和\(a[j]\). 把\(a[i]\)分解质因数.设\(a[i]\)分解出的质因数的数量为\(cnt[i]\). 设\(a[i]\geq a[j]\) 那么\ ...

随机推荐

  1. Java之所有输入流输出流的分类

    (1)字节输入流        基类:InputStream        FileInputStream.ByteArrayInputStream.PipedInputStream.Buffered ...

  2. zookeeper-操作与应用场景-《每日五分钟搞定大数据》

    Zookeeper作为一个分布式协调系统提供了一项基本服务:分布式锁服务,分布式锁是分布式协调技术实现的核心内容.像配置管理.任务分发.组服务.分布式消息队列.分布式通知/协调等,这些应用实际上都是基 ...

  3. WebApi集成Swagger

    1.新建一个WebApi空项目 2.新建一个Person实体类: public class Person { public int ID { get; set; } public string Use ...

  4. 失物找寻APP软件需求规格说明书——第三次团队作业

    ⭐对于软件需求规格说明书的理解 在没写这份软件需求规格说明书的时候我们组成员都不是很理解它的必要性,当然,写完之后才知道它的作用. 软件需求说明书的存在是为了使用户和软件开发者双方对该软件的初始规定有 ...

  5. 我去年码了个表(WPF MvvM)

    又快个把月没写博客了(最近忙着学JAVA去了,都是被逼的/(ㄒoㄒ)/~~),然后用WPF码了个表,其实想加上那种提醒功能什么的,额,就这样了吧,主要是感受一下数据驱动的思想. 效果如下: 前端XAM ...

  6. [Linux]Debian 9重启DNS重置问题

    先编辑/etc/resolv.conf, 添加一个DNS, 比如114.114.114.114 然后sudo apt-get install resolvconf 然后编辑/etc/resolvcon ...

  7. Spring集成Quarz开发环境搭建

    第一步,搭建Spring相关的环境,参照:http://www.cnblogs.com/dyh004/p/4645572.html 第二步,下载Quartz相关的压缩文件,解压,下载地址:http:/ ...

  8. 软件工程(FZU2015) 赛季得分榜,第10回合(alpha冲刺)

    SE_FZU目录:1 2 3 4 5 6 7 8 9 10 11 12 13 积分规则 积分制: 作业为10分制,练习为3分制:alpha30分: 团队项目分=团队得分+个人贡献分 个人贡献分: 个人 ...

  9. 【问题解决方案】本地代码文件上传到GitHub里中文乱码问题

    刚刚学完Git并试着上传了我的化石Java代码到远程库,表面一切和谐,然而.. 真让人大惊失色.. step1-检查浏览器是否是utf-8(谷歌默认是) step2-在本地编辑器设置 (按理说,not ...

  10. Python爬虫——用BeautifulSoup、python-docx爬取廖雪峰大大的教程为word文档

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 廖雪峰大大贡献的教程写的不错,写了个爬虫把教程保存为word文件,供大家方便下载学习:http://p ...