题目描述

有 n 种数字,第 i 种数字是 ai、有 bi 个,权值是 ci。
若两个数字 ai、aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数,
那么这两个数字可以配对,并获得 ci×cj 的价值。
一个数字只能参与一次配对,可以不参与配对。
在获得的价值总和不小于 0 的前提下,求最多进行多少次配对。

输入

第一行一个整数 n。
第二行 n 个整数 a1、a2、……、an。
第三行 n 个整数 b1、b2、……、bn。
第四行 n 个整数 c1、c2、……、cn。

输出

一行一个数,最多进行多少次配对

样例输入

3
2 4 8
2 200 7
-1 -2 1

样例输出

4

提示

n≤200,ai≤10^9,bi≤10^5,∣ci∣≤10^5

有数量上限、有价值,显然费用流,因为题目要求费用不小于$0$,所以用最大费用最大流。将每个点拆成两个点$i$和$i'$,分别与源点和汇点连边,流量为$b[i]$、费用为$0$。枚举任意两个数判断是否能匹配。因为$i$与$j$能匹配,$j$就能与$i$匹配,所以将$i$与$j'$连边、$j$与$i'$连边,流量为$INF$、费用为$-c[i]*c[j]$(因为跑最大费用最大流,边权取反)。每次$SPFA$找到一条增广路,如果加上之后答案满足要求就继续增广,否则就停止。因为一对数的匹配算了两次,所以最后答案除$2$即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define INF 1000000000000000ll
#define inf 1000000000
using namespace std;
int head[1000];
int next[100000];
int to[100000];
ll v[100000];
int c[100000];
int f[1000];
int from[100000];
int tot=1;
int S,T;
ll ans;
int n;
int A[300];
int B[300];
int C[300];
queue<int>q;
int vis[1000];
ll d[1000];
int maxflow;
void add(int x,int y,ll z,int w)
{
next[++tot]=head[x];
head[x]=tot;
to[tot]=y;
v[tot]=z;
c[tot]=w;
from[tot]=x;
next[++tot]=head[y];
head[y]=tot;
to[tot]=x;
v[tot]=-z;
c[tot]=0;
from[tot]=y;
}
bool result()
{
int now=T;
int flow=inf;
while(now!=S)
{
flow=min(flow,c[f[now]]);
now=from[f[now]];
}
if(ans+d[T]*flow<=0)
{
ans+=d[T]*flow;
maxflow+=flow;
}
else
{
maxflow+=fabs(ans)/fabs(d[T]);
return 1;
}
now=T;
while(now!=S)
{
c[f[now]]-=flow;
c[f[now]^1]+=flow;
now=from[f[now]];
}
return 0;
}
bool SPFA()
{
for(int i=1;i<=T;i++)
{
d[i]=INF;
}
d[S]=0;
q.push(S);
vis[S]=1;
while(!q.empty())
{
int now=q.front();
q.pop();
vis[now]=0;
for(int i=head[now];i;i=next[i])
{
if(!c[i])
{
continue;
}
if(d[to[i]]>d[now]+v[i])
{
d[to[i]]=d[now]+v[i];
f[to[i]]=i;
if(!vis[to[i]])
{
q.push(to[i]);
vis[to[i]]=1;
}
}
}
}
return d[T]!=INF;
}
void find_max()
{
while(SPFA())
{
if(result())
{
break;
}
}
}
bool check(int x,int y)
{
if(x<y)
{
swap(x,y);
}
if(x%y)
{
return false;
}
int d=x/y;
for(int i=2;i*i<=d;i++)
{
if(d%i==0)
{
return false;
}
}
return true;
}
int main()
{
scanf("%d",&n);
S=2*n+1,T=S+1;
for(int i=1;i<=n;i++)
{
scanf("%d",&A[i]);
}
for(int i=1;i<=n;i++)
{
scanf("%d",&B[i]);
add(S,i,0,B[i]);
add(i+n,T,0,B[i]);
}
for(int i=1;i<=n;i++)
{
scanf("%d",&C[i]);
}
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;j++)
{
if(check(A[i],A[j]))
{
add(i,n+j,-1ll*C[i]*C[j],1<<30);
add(j,n+i,-1ll*C[i]*C[j],1<<30);
}
}
}
find_max();
printf("%d",maxflow/2);
}

BZOJ4514[Sdoi2016]数字配对——最大费用最大流的更多相关文章

  1. 【BZOJ-4514】数字配对 最大费用最大流 + 质因数分解 + 二分图 + 贪心 + 线性筛

    4514: [Sdoi2016]数字配对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 726  Solved: 309[Submit][Status ...

  2. BZOJ4514 [Sdoi2016]数字配对 【费用流】

    题目 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×c ...

  3. bzoj4514: [Sdoi2016]数字配对(费用流)

    传送门 ps:费用流增广的时候费用和流量打反了……调了一个多小时 每个数只能参与一次配对,那么这就是一个匹配嘛 我们先把每个数分解质因数,记质因子总个数为$cnt_i$,那如果$a_i/a_j$是质数 ...

  4. 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流

    [bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...

  5. BZOJ4514——[Sdoi2016]数字配对

    有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的 ...

  6. bzoj4514 [Sdoi2016]数字配对

    Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...

  7. bzoj4514: [Sdoi2016]数字配对--费用流

    看了一眼题目&数据范围,觉得应该是带下界的费用流 原来想拆点变成二分图,能配对的连边,跑二分图,可行性未知 后来看到另外一种解法.. 符合匹配要求的数要满足:质因子的个数相差为1,且两者可整除 ...

  8. 【BZOJ4514】数字配对(费用流)

    题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci× ...

  9. [SDOI2016]数字配对(费用流+贪心+trick)

    重点是如何找到可以配对的\(a[i]\)和\(a[j]\). 把\(a[i]\)分解质因数.设\(a[i]\)分解出的质因数的数量为\(cnt[i]\). 设\(a[i]\geq a[j]\) 那么\ ...

随机推荐

  1. vue 项目中添加阿里巴巴矢量图

    1. 选择需要的图标,添加到购物车 2. 打开购物车,添加至我的项目 3. 打开项目列表 - 更多操作 - 编辑项目 修改FontClass/Symbol前缀,自定义一个名称,例如:v-icon-cu ...

  2. NLog配置分享

    新建一个文件命名为NLog.Config,然后添加如下代码 <?xml version="1.0" encoding="utf-8" ?> < ...

  3. flask 跨域请求

    Flask中,跨域请求主要有两种方式: 1.在响应头信息中添加允许跨域 如下,使用装饰器app.after_request(我这里的web是定义的蓝图),这样在每次请求后,加入header 2.使用第 ...

  4. JWT认证原理及使用

    一.JWT原理: 参考文章:https://www.jianshu.com/p/180a870a308a 1.传统的登录方式: 浏览器输入用户名密码,服务端校验通过,根据用户信息生成一个token,将 ...

  5. jQuery 初识 筛选器 属性选择器

    ---------------------------大事使我们惊讶,小事使我们沮丧,久而久之,我们对这二者都会习以为常. 一 jQuery是什么? [1]   jQuery由美国人John Resi ...

  6. centos7下zabbix安装与部署

    1.Zabbix介绍 zabbix是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案. zabbix能监视各种网络参数,保证服务器系统的安全运营:并提供灵活的通知机制以让系 ...

  7. HDU 3478 Catch (连通性&&二分图判断)

    链接 [https://vjudge.net/contest/281085#problem/C] 题意 一个n个点,m条边的图,开始的点是s 每次必须移动到相邻的位置,问你是否存在某个时刻所有点都可能 ...

  8. ARC 066D Xor Sum AtCoder - 2272 (打表找规律)

    Problem Statement You are given a positive integer N. Find the number of the pairs of integers u and ...

  9. final域的内存语义

    final 一.final的基本语义 final关键字可以用来修饰类.方法和变量(包括成员变量和局部变量) 当用final修饰一个类时,表明这个类不能被继承. 当用final修饰一个方法时,表明这个方 ...

  10. Java 常见编码格式——URL、Base64

    数据编码 我们对数据进行编码是因为在某些情况下,不能直接传输中文字符或者其他字符,比如在设置http协议的头部信息或者cookie时,如果value有中文字符,那么就需要将中文字符使用某种编码方式进行 ...