spark0.9分布式安装
http://blog.csdn.net/myboyliu2007/article/details/18990277
spark安装包:spark-0.9.0-incubating-bin-hadoop2.tgz
操作系统: CentOS6.4
jdk版本: jdk1.7.0_21
1. Cluster模式
1.1安装Hadoop
用VMware Workstation创建三台CentOS虚拟机,hostname分别设置为 master,slaver01, slaver02,设置SSH无密码登陆,安装hadoop,然后启动hadoop集群。参考我的这篇博客,hadoop-2.2.0分布式安装.
1.2 Scala
在三台机器上都要安装 Scala 2.9.3,按照我的博客SparK安装的步骤。JDK在安装Hadoop时已经安装了。进入master节点。
$ cd
$ scp -r scala-2.10.3 root@slaver01:~
$ scp -r scala-2.10.3 root@slaver02:~
1.3在master上安装并配置Spark
解压
$ tar -zxf
spark-0.9.0-incubating-bin-hadoop2.tgz
$ mv
spark-0.9.0-incubating-bin-hadoop2 spark-0.9
在 inconf/spark-env.sh
中设置SCALA_HOME
$ cd ~/
spark-0.9/conf
$ mv spark-env.sh.template spark-env.sh
$ vi spark-env.sh
# add the following line
export SCALA_HOME=/root/scala-2.10.3
export JAVA_HOME=/usr/java/jdk1.7.0_21
export SPARK_MASTER_IP=192.168.159.129
export SPARK_WORKER_MEMORY=1000m
# save and exit
在conf/slaves
,添加Sparkworker的hostname,一行一个。
$ vim slaves
slaver01
slaver02
master
# save and exit
(可选)设置 SPARK_HOME环境变量,并将SPARK_HOME/bin加入PATH
$ vim /etc/profile
# add the following lines at the end
export SPARK_HOME=$HOME/spark-0.9
export PATH=$PATH:$SPARK_HOME/bin
# save and exit vim
#make the bash profile take effect immediately
$ source /etc/profile
1.4在所有worker上安装并配置Spark
既然master上的这个文件件已经配置好了,把它拷贝到所有的worker即可。注意,三台机器spark所在目录必须一致,因为master会登陆到worker上执行命令,master认为worker的spark路径与自己一样。
$ cd
$ scp -r spark-0.9 root@slaver01:~
$ scp -r spark-0.9 root@slaver02:~
1.5启动 Spark集群
在master上执行
$ cd ~/spark-0.9
$ ./sbin/start-all.sh
检测进程是否启动
[root@master ~]# jps
3200 SecondaryNameNode
7350 Master
7470 Worker
3025 NameNode
8022 Jps
3332 ResourceManager
浏览master的web UI(默认http://master:8080).这是你应该可以看到所有的work节点,以及他们的CPU个数和内存等信息。
1.6运行Spark自带的例子
运行SparkPi
$ cd ~/spark-0.9
root@master spark-0.9]# ./bin/run-example org.apache.spark.examples.SparkPi local
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/root/spark-0.9/examples/target/scala-2.10/spark-examples_2.10-assembly-0.9.0-incubating.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/root/spark-0.9/assembly/target/scala-2.10/spark-assembly_2.10-0.9.0-incubating-hadoop2.2.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.SimpleLoggerFactory]
1 [spark-akka.actor.default-dispatcher-2] INFO akka.event.slf4j.Slf4jLogger - Slf4jLogger started
101 [spark-akka.actor.default-dispatcher-5] INFO Remoting - Starting remoting
439 [spark-akka.actor.default-dispatcher-4] INFO Remoting - Remoting started; listening on addresses :[akka.tcp://spark@master:37615]
444 [spark-akka.actor.default-dispatcher-4] INFO Remoting - Remoting now listens on addresses: [akka.tcp://spark@master:37615]
510 [main] INFO org.apache.spark.SparkEnv - Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
510 [main] INFO org.apache.spark.SparkEnv - Registering BlockManagerMaster
590 [main] INFO org.apache.spark.storage.DiskBlockManager - Created local directory at /tmp/spark-local-20140209203346-b5da
596 [main] INFO org.apache.spark.storage.MemoryStore - MemoryStore started with capacity 148.5 MB.
634 [main] INFO org.apache.spark.network.ConnectionManager - Bound socket to port 57070 with id = ConnectionManagerId(master,57070)
642 [main] INFO org.apache.spark.storage.BlockManagerMaster - Trying to register BlockManager
648 [spark-akka.actor.default-dispatcher-13] INFO org.apache.spark.storage.BlockManagerMasterActor$BlockManagerInfo - Registering block manager master:57070 with 148.5 MB RAM
651 [main] INFO org.apache.spark.storage.BlockManagerMaster - Registered BlockManager
693 [main] INFO org.apache.spark.HttpServer - Starting HTTP Server
781 [main] INFO org.eclipse.jetty.server.Server - jetty-7.x.y-SNAPSHOT
810 [main] INFO org.eclipse.jetty.server.AbstractConnector - Started SocketConnector@0.0.0.0:59449
813 [main] INFO org.apache.spark.broadcast.HttpBroadcast - Broadcast server started at http://192.168.159.129:59449
823 [main] INFO org.apache.spark.SparkEnv - Registering MapOutputTracker
831 [main] INFO org.apache.spark.HttpFileServer - HTTP File server directory is /tmp/spark-d98132d9-6758-47ef-83ea-5bb749e14f4c
831 [main] INFO org.apache.spark.HttpServer - Starting HTTP Server
833 [main] INFO org.eclipse.jetty.server.Server - jetty-7.x.y-SNAPSHOT
837 [main] INFO org.eclipse.jetty.server.AbstractConnector - Started SocketConnector@0.0.0.0:55967
1135 [main] INFO org.eclipse.jetty.server.Server - jetty-7.x.y-SNAPSHOT
1136 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - started o.e.j.s.h.ContextHandler{/storage/rdd,null}
1136 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - started o.e.j.s.h.ContextHandler{/storage,null}
1136 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - started o.e.j.s.h.ContextHandler{/stages/stage,null}
1136 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - started o.e.j.s.h.ContextHandler{/stages/pool,null}
1136 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - started o.e.j.s.h.ContextHandler{/stages,null}
1136 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - started o.e.j.s.h.ContextHandler{/environment,null}
1136 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - started o.e.j.s.h.ContextHandler{/executors,null}
1136 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - started o.e.j.s.h.ContextHandler{/metrics/json,null}
1136 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - started o.e.j.s.h.ContextHandler{/static,null}
1136 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - started o.e.j.s.h.ContextHandler{/,null}
1149 [main] INFO org.eclipse.jetty.server.AbstractConnector - Started SelectChannelConnector@0.0.0.0:4040
1150 [main] INFO org.apache.spark.ui.SparkUI - Started Spark Web UI at http://master:4040
14/02/09 20:33:47 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2224 [main] INFO org.apache.spark.SparkContext - Added JAR /root/spark-0.9/examples/target/scala-2.10/spark-examples_2.10-assembly-0.9.0-incubating.jar at http://192.168.159.129:55967/jars/spark-examples_2.10-assembly-0.9.0-incubating.jar with timestamp 1391949228471
2681 [main] INFO org.apache.spark.SparkContext - Starting job: reduce at SparkPi.scala:39
2712 [spark-akka.actor.default-dispatcher-5] INFO org.apache.spark.scheduler.DAGScheduler - Got job 0 (reduce at SparkPi.scala:39) with 2 output partitions (allowLocal=false)
2713 [spark-akka.actor.default-dispatcher-5] INFO org.apache.spark.scheduler.DAGScheduler - Final stage: Stage 0 (reduce at SparkPi.scala:39)
2714 [spark-akka.actor.default-dispatcher-5] INFO org.apache.spark.scheduler.DAGScheduler - Parents of final stage: List()
2723 [spark-akka.actor.default-dispatcher-5] INFO org.apache.spark.scheduler.DAGScheduler - Missing parents: List()
2732 [spark-akka.actor.default-dispatcher-5] INFO org.apache.spark.scheduler.DAGScheduler - Submitting Stage 0 (MappedRDD[1] at map at SparkPi.scala:35), which has no missing parents
2851 [spark-akka.actor.default-dispatcher-5] INFO org.apache.spark.scheduler.DAGScheduler - Submitting 2 missing tasks from Stage 0 (MappedRDD[1] at map at SparkPi.scala:35)
2854 [spark-akka.actor.default-dispatcher-5] INFO org.apache.spark.scheduler.TaskSchedulerImpl - Adding task set 0.0 with 2 tasks
2882 [spark-akka.actor.default-dispatcher-13] INFO org.apache.spark.scheduler.TaskSetManager - Starting task 0.0:0 as TID 0 on executor localhost: localhost (PROCESS_LOCAL)
2899 [spark-akka.actor.default-dispatcher-13] INFO org.apache.spark.scheduler.TaskSetManager - Serialized task 0.0:0 as 1426 bytes in 8 ms
2913 [Executor task launch worker-0] INFO org.apache.spark.executor.Executor - Running task ID 0
2935 [Executor task launch worker-0] INFO org.apache.spark.executor.Executor - Fetching http://192.168.159.129:55967/jars/spark-examples_2.10-assembly-0.9.0-incubating.jar with timestamp 1391949228471
2937 [Executor task launch worker-0] INFO org.apache.spark.util.Utils - Fetching http://192.168.159.129:55967/jars/spark-examples_2.10-assembly-0.9.0-incubating.jar to /tmp/fetchFileTemp2801445921033654743.tmp
5486 [Executor task launch worker-0] INFO org.apache.spark.executor.Executor - Adding file:/tmp/spark-539f9793-313d-4293-b83f-3bcfda6be08a/spark-examples_2.10-assembly-0.9.0-incubating.jar to class loader
5568 [Executor task launch worker-0] INFO org.apache.spark.executor.Executor - Serialized size of result for 0 is 641
5569 [Executor task launch worker-0] INFO org.apache.spark.executor.Executor - Sending result for 0 directly to driver
5572 [Executor task launch worker-0] INFO org.apache.spark.executor.Executor - Finished task ID 0
5573 [spark-akka.actor.default-dispatcher-13] INFO org.apache.spark.scheduler.TaskSetManager - Starting task 0.0:1 as TID 1 on executor localhost: localhost (PROCESS_LOCAL)
5575 [spark-akka.actor.default-dispatcher-13] INFO org.apache.spark.scheduler.TaskSetManager - Serialized task 0.0:1 as 1426 bytes in 0 ms
5576 [Executor task launch worker-0] INFO org.apache.spark.executor.Executor - Running task ID 1
5583 [Result resolver thread-0] INFO org.apache.spark.scheduler.TaskSetManager - Finished TID 0 in 2701 ms on localhost (progress: 0/2)
5591 [spark-akka.actor.default-dispatcher-13] INFO org.apache.spark.scheduler.DAGScheduler - Completed ResultTask(0, 0)
5630 [Executor task launch worker-0] INFO org.apache.spark.executor.Executor - Serialized size of result for 1 is 641
5630 [Executor task launch worker-0] INFO org.apache.spark.executor.Executor - Sending result for 1 directly to driver
5631 [Executor task launch worker-0] INFO org.apache.spark.executor.Executor - Finished task ID 1
5636 [Result resolver thread-1] INFO org.apache.spark.scheduler.TaskSetManager - Finished TID 1 in 63 ms on localhost (progress: 1/2)
5640 [spark-akka.actor.default-dispatcher-13] INFO org.apache.spark.scheduler.DAGScheduler - Completed ResultTask(0, 1)
5643 [spark-akka.actor.default-dispatcher-13] INFO org.apache.spark.scheduler.DAGScheduler - Stage 0 (reduce at SparkPi.scala:39) finished in 2.765 s
5648 [Result resolver thread-1] INFO org.apache.spark.scheduler.TaskSchedulerImpl - Remove TaskSet 0.0 from pool
5661 [main] INFO org.apache.spark.SparkContext - Job finished: reduce at SparkPi.scala:39, took 2.979330573 s
Pi is roughly 3.143
5681 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - stopped o.e.j.s.h.ContextHandler{/,null}
5681 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - stopped o.e.j.s.h.ContextHandler{/static,null}
5682 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - stopped o.e.j.s.h.ContextHandler{/metrics/json,null}
5682 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - stopped o.e.j.s.h.ContextHandler{/executors,null}
5682 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - stopped o.e.j.s.h.ContextHandler{/environment,null}
5682 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - stopped o.e.j.s.h.ContextHandler{/stages,null}
5682 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - stopped o.e.j.s.h.ContextHandler{/stages/pool,null}
5682 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - stopped o.e.j.s.h.ContextHandler{/stages/stage,null}
5682 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - stopped o.e.j.s.h.ContextHandler{/storage,null}
5682 [main] INFO org.eclipse.jetty.server.handler.ContextHandler - stopped o.e.j.s.h.ContextHandler{/storage/rdd,null}
6817 [spark-akka.actor.default-dispatcher-14] INFO org.apache.spark.MapOutputTrackerMasterActor - MapOutputTrackerActor stopped!
6873 [connection-manager-thread] INFO org.apache.spark.network.ConnectionManager - Selector thread was interrupted!
6875 [main] INFO org.apache.spark.network.ConnectionManager - ConnectionManager stopped
6882 [main] INFO org.apache.spark.storage.MemoryStore - MemoryStore cleared
6884 [main] INFO org.apache.spark.storage.BlockManager - BlockManager stopped
6886 [spark-akka.actor.default-dispatcher-14] INFO org.apache.spark.storage.BlockManagerMasterActor - Stopping BlockManagerMaster
6889 [main] INFO org.apache.spark.storage.BlockManagerMaster - BlockManagerMaster stopped
6901 [main] INFO org.apache.spark.SparkContext - Successfully stopped SparkContext
6924 [spark-akka.actor.default-dispatcher-2] INFO akka.remote.RemoteActorRefProvider$RemotingTerminator - Shutting down remote daemon.
6947 [spark-akka.actor.default-dispatcher-13] INFO akka.remote.RemoteActorRefProvider$RemotingTerminator - Remote daemon shut down; proceeding with flushing remote transports.
7025 [spark-akka.actor.default-dispatcher-5] INFO Remoting - Remoting shut down
7027 [spark-akka.actor.default-dispatcher-2] INFO akka.remote.RemoteActorRefProvider$RemotingTerminator - Remoting shut down.
[root@master spark-0.9]#
运行SparkLR
#Logistic Regression
[root@master spark-0.9]# ./bin/run-example org.apache.spark.examples.SparkLR spark://192.168.159.129:7077
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/root/spark-0.9/examples/target/scala-2.10/spark-examples_2.10-assembly-0.9.0-incubating.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/root/spark-0.9/assembly/target/scala-2.10/spark-assembly_2.10-0.9.0-incubating-hadoop2.2.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.SimpleLoggerFactory]
0 [spark-akka.actor.default-dispatcher-4] INFO akka.event.slf4j.Slf4jLogger - Slf4jLogger started
95 [spark-akka.actor.default-dispatcher-4] INFO Remoting - Starting remoting
441 [spark-akka.actor.default-dispatcher-2] INFO Remoting - Remoting started; listening on addresses :[akka.tcp://spark@master:59496]
441 [spark-akka.actor.default-dispatcher-2] INFO Remoting - Remoting now listens on addresses: [akka.tcp://spark@master:59496]
494 [main] INFO org.apache.spark.SparkEnv - Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
494 [main] INFO org.apache.spark.SparkEnv - Registering BlockManagerMaster
565 [main] INFO org.apache.spark.storage.DiskBlockManager - Created local directory at /tmp/spark-local-20140208155527-140e
569 [main] INFO org.apache.spark.storage.MemoryStore - MemoryStore started with capacity 148.5 MB.
607 [main] INFO org.apache.spark.network.ConnectionManager - Bound socket to port 46771 with id = ConnectionManagerId(master,46771)
kend - Registered executor: Actor[akka.tcp://sparkExecutor@slaver02:37832/user/Executor#1651743406] with ID 3
45103 [spark-akka.actor.default-dispatcher-4] INFO org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend - Executor 1 disconnected, so removing it
45103 [spark-akka.actor.default-dispatcher-4] ERROR org.apache.spark.scheduler.TaskSchedulerImpl - Lost executor 1 on slaver01: remote Akka client disassociated
45103 [spark-akka.actor.default-dispatcher-4] INFO org.apache.spark.scheduler.TaskSetManager - Re-queueing tasks for 1 from TaskSet 0.0
45104 [spark-akka.actor.default-dispatcher-4] WARN org.apache.spark.scheduler.TaskSetManager - Lost TID 1 (task 0.0:0)
45104 [spark-akka.actor.default-dispatcher-4] INFO org.apache.spark.scheduler.TaskSetManager - Starting task 0.0:0 as TID 3 on executor 3: slaver02 (PROCESS_LOCAL)
45105 [spark-akka.actor.default-dispatcher-5] INFO org.apache.spark.scheduler.DAGScheduler - Executor lost: 1 (epoch 1)
45105 [spark-akka.actor.default-dispatcher-13] INFO org.apache.spark.storage.BlockManagerMasterActor - Trying to remove executor 1 from BlockManagerMaster.
45106 [spark-akka.actor.default-dispatcher-5] INFO org.apache.spark.storage.BlockManagerMaster - Removed 1 successfully in removeExecutor
45433 [spark-akka.actor.default-dispatcher-4] INFO org.apache.spark.scheduler.TaskSetManager - Serialized task 0.0:0 as 551899 bytes in 329 ms
45453 [spark-akka.actor.default-dispatcher-4] INFO org.apache.spark.deploy.client.AppClient$ClientActor - Executor updated: app-20140208155019-0001/1 is now FAILED (Command exited with code 1)
45453 [spark-akka.actor.default-dispatcher-4] INFO org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend - Executor app-20140208155019-0001/1 removed: Command exited with code 1
45468 [spark-akka.actor.default-dispatcher-14] INFO org.apache.spark.deploy.client.AppClient$ClientActor - Executor added: app-20140208155019-0001/5 on worker-20140208153257-slaver01-49982 (slaver01:49982) with 1 cores
45469 [spark-akka.actor.default-dispatcher-14] INFO org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend - Granted executor ID app-20140208155019-0001/5 on hostPort slaver01:49982 with 1 cores, 512.0 MB RAM
45472 [spark-akka.actor.default-dispatcher-5] ERROR akka.remote.EndpointWriter - AssociationError [akka.tcp://spark@master:52897] -> [akka.tcp://sparkExecutor@slaver01:57904]: Error [Association failed with [akka.tcp://sparkExecutor@slaver01:57904]] [
akka.remote.EndpointAssociationException: Association failed with [akka.tcp://sparkExecutor@slaver01:57904]
Caused by: akka.remote.transport.netty.NettyTransport$$anonfun$associate$1$$anon$2: Connection refused: slaver01/192.168.159.130:57904
]
45483 [spark-akka.actor.default-dispatcher-4] ERROR akka.remote.EndpointWriter - AssociationError [akka.tcp://spark@master:52897] -> [akka.tcp://sparkExecutor@slaver01:57904]: Error [Association failed with [akka.tcp://sparkExecutor@slaver01:57904]] [
akka.remote.EndpointAssociationException: Association failed with [akka.tcp://sparkExecutor@slaver01:57904]
Caused by: akka.remote.transport.netty.NettyTransport$$anonfun$associate$1$$anon$2: Connection refused: slaver01/192.168.159.130:57904
]
45780 [spark-akka.actor.default-dispatcher-5] ERROR akka.remote.EndpointWriter - AssociationError [akka.tcp://spark@master:52897] -> [akka.tcp://sparkExecutor@slaver01:57904]: Error [Association failed with [akka.tcp://sparkExecutor@slaver01:57904]] [
akka.remote.EndpointAssociationException: Association failed with [akka.tcp://sparkExecutor@slaver01:57904]
Caused by: akka.remote.transport.netty.NettyTransport$$anonfun$associate$1$$anon$2: Connection refused: slaver01/192.168.159.130:57904
]
45781 [spark-akka.actor.default-dispatcher-15] INFO org.apache.spark.deploy.client.AppClient$ClientActor - Executor updated: app-20140208155019-0001/5 is now RUNNING
46589 [spark-akka.actor.default-dispatcher-2] INFO org.apache.spark.storage.BlockManagerMasterActor$BlockManagerInfo - Added rdd_0_1 in memory on master:44542 (size: 717.5 KB, free: 296.3 MB)
46762 [Result resolver thread-0] INFO org.apache.spark.scheduler.TaskSetManager - Finished TID 2 in 20510 ms on master (progress: 0/2)
46767 [spark-akka.actor.default-dispatcher-2] INFO org.apache.spark.scheduler.DAGScheduler - Completed ResultTask(0, 1)
50080 [spark-akka.actor.default-dispatcher-13] INFO org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend - Registered executor: Actor[akka.tcp://sparkExecutor@slaver01:60056/user/Executor#1166039681] with ID 5
54828 [spark-akka.actor.default-dispatcher-2] INFO org.apache.spark.storage.BlockManagerMasterActor$BlockManagerInfo - Registering block manager slaver01:43329 with 297.0 MB RAM
62254 [spark-akka.actor.default-dispatcher-4] INFO org.apache.spark.storage.BlockManagerMasterActor$BlockManagerInfo - Registering block manager slaver02:55569 with 297.0 MB RAM
89782 [spark-akka.actor.default-dispatcher-3] INFO org.apache.spark.storage.BlockManagerMasterActor$BlockManagerInfo - Added rdd_0_0 in memory on slaver02:55569 (size: 717.5 KB, free: 296.3 MB)
90043 [Result resolver thread-1] INFO org.apache.spark.scheduler.TaskSetManager - Finished TID 3 in 44939 ms on slaver02 (progress: 1/2)
90043 [spark-akka.actor.default-dispatcher-3] INFO org.apache.spark.scheduler.DAGScheduler - Completed ResultTask(0, 0)
90061 [spark-akka.actor.default-dispatcher-3] INFO org.apache.spark.scheduler.DAGScheduler - Stage 0 (reduce at SparkLR.scala:64) finished in 84.257 s
90066 [Result resolver thread-1] INFO org.apache.spark.scheduler.TaskSchedulerImpl - Remove TaskSet 0.0 from pool
90075 [main] INFO org.apache.spark.SparkContext - Job finished: reduce at SparkLR.scala:64, took 84.881569465 s
On iteration 2
90100 [main] INFO org.apache.spark.SparkContext - Starting job: reduce at SparkLR.scala:64
90100 [spark-akka.actor.default-dispatcher-3] INFO org.apache.spark.scheduler.DAGScheduler - Got job 1 (reduce at SparkLR.scala:64) with 2 output partitions (allowLocal=false)
90100 [spark-akka.actor.default-dispatcher-3] INFO org.apache.spark.scheduler.DAGScheduler - Final stage: Stage 1 (reduce at SparkLR.scala:64)
90101 [spark-akka.actor.default-dispatcher-3] INFO org.apache.spark.scheduler.DAGScheduler - Parents of final stage: List()
90103 [spark-akka.actor.default-dispatcher-3] INFO org.apache.spark.scheduler.DAGScheduler - Missing parents: List()
90104 [spark-akka.actor.default-dispatcher-3] INFO org.apache.spark.scheduler.DAGScheduler - Submitting Stage 1 (MappedRDD[2] at map at SparkLR.scala:62), which has no missing parents
90164 [spark-akka.actor.default-dispatcher-3] INFO org.apache.spark.scheduler.DAGScheduler - Submitting 2 missing tasks from Stage 1 (MappedRDD[2] at map at SparkLR.scala:62)
90165 [spark-akka.actor.default-dispatcher-3] INFO org.apache.spark.scheduler.TaskSchedulerImpl - Adding task set 1.0 with 2 tasks
90169 [spark-akka.actor.default-dispatcher-13] INFO org.apache.spark.scheduler.TaskSetManager - Starting task 1.0:1 as TID 4 on executor 4: master (PROCESS_LOCAL)
90191 [spark-akka.actor.default-dispatcher-13] INFO org.apache.spark.scheduler.TaskSetManager - Serialized task 1.0:1 as 551895 bytes in 21 ms
90194 [spark-akka.actor.default-dispatcher-13] INFO org.apache.spark.scheduler.TaskSetManager - Starting task 1.0:0 as TID 5 on executor 3: slaver02 (PROCESS_LOCAL)
90220 [spark-akka.actor.default-dispatcher-13] INFO org.apache.spark.scheduler.TaskSetManager - Serialized task 1.0:0 as 551895 bytes in 25 ms
91222 [Result resolver thread-2] INFO org.apache.spark.scheduler.TaskSetManager - Finished TID 4 in 1053 ms on master (progress: 0/2)
91224 [spark-akka.actor.default-dispatcher-16] INFO org.apache.spark.scheduler.DAGScheduler - Completed ResultTask(1, 1)
91609 [Result resolver thread-3] INFO org.apache.spark.scheduler.TaskSetManager - Finished TID 5 in 1415 ms on slaver02 (progress: 1/2)
91610 [spark-akka.actor.default-dispatcher-16] INFO org.apache.spark.scheduler.DAGScheduler - Completed ResultTask(1, 0)
91610 [spark-akka.actor.default-dispatcher-16] INFO org.apache.spark.scheduler.DAGScheduler - Stage 1 (reduce at SparkLR.scala:64) finished in 1.437 s
91611 [main] INFO org.apache.spark.SparkContext - Job finished: reduce at SparkLR.scala:64, took 1.510467278 s
On iteration 3
91616 [Result resolver thread-3] INFO org.apache.spark.scheduler.TaskSchedulerImpl - Remove TaskSet 1.0 from pool
91622 [main] INFO org.apache.spark.SparkContext - Starting job: reduce at SparkLR.scala:64
91623 [spark-akka.actor.default-dispatcher-2] INFO org.apache.spark.scheduler.DAGScheduler - Got job 2 (reduce at SparkLR.scala:64) with 2 output partitions (allowLocal=false)
91623 [spark-akka.actor.default-dispatcher-2] INFO org.apache.spark.scheduler.DAGScheduler - Final stage: Stage 2 (reduce at SparkLR.scala:64)
91623 [spark-akka.actor.default-dispatcher-2] INFO org.apache.spark.scheduler.DAGScheduler - Parents of final stage: List()
91624 [spark-akka.actor.default-dispatcher-2] INFO org.apache.spark.scheduler.DAGScheduler - Missing parents: List()
91624 [spark-akka.actor.default-dispatcher-2] INFO org.apache.spark.scheduler.DAGScheduler - Submitting Stage 2 (MappedRDD[3] at map at SparkLR.scala:62), which has no missing parents
91777 [spark-akka.actor.default-dispatcher-2] INFO org.apache.spark.scheduler.DAGScheduler - Submitting 2 missing tasks from Stage 2 (MappedRDD[3] at map at SparkLR.scala:62)
91777 [spark-akka.actor.default-dispatcher-2] INFO org.apache.spark.scheduler.TaskSchedulerImpl - Adding task set 2.0 with 2 tasks
91779 [spark-akka.actor.default-dispatcher-5] INFO org.apache.spark.scheduler.TaskSetManager - Starting task 2.0:1 as TID 6 on executor 4: master (PROCESS_LOCAL)
91899 [spark-akka.actor.default-dispatcher-5] INFO org.apache.spark.scheduler.TaskSetManager - Serialized task 2.0:1 as 551896 bytes in 119 ms
91899 [spark-akka.actor.default-dispatcher-5] INFO org.apache.spark.scheduler.TaskSetManager - Starting task 2.0:0 as TID 7 on executor 3: slaver02 (PROCESS_LOCAL)
91922 [spark-akka.actor.default-dispatcher-5] INFO org.apache.spark.scheduler.TaskSetManager - Serialized task 2.0:0 as 551896 bytes in 23 ms
92290 [Result resolver thread-0] INFO org.apache.spark.scheduler.TaskSetManager - Finished TID 6 in 511 ms on master (progress: 0/2)
92291 [spark-akka.actor.default-dispatcher-14] INFO org.apache.spark.scheduler.DAGScheduler - Completed ResultTask(2, 1)
92694 [Result resolver thread-1] INFO org.apache.spark.scheduler.TaskSetManager - Finished TID 7 in 794 ms on slaver02 (progress: 1/2)
92694 [Result resolver thread-1] INFO org.apache.spark.scheduler.TaskSchedulerImpl - Remove TaskSet 2.0 from pool
92694 [spark-akka.actor.default-dispatcher-4] INFO org.apache.spark.scheduler.DAGScheduler - Completed ResultTask(2, 0)
92695 [spark-akka.actor.default-dispatcher-4] INFO org.apache.spark.scheduler.DAGScheduler - Stage 2 (reduce at SparkLR.scala:64) finished in 0.913 s
92695 [main] INFO org.apache.spark.SparkContext - Job finished: reduce at SparkLR.scala:64, took 1.072671482 s
On iteration 4
92704 [main] INFO org.apache.spark.SparkContext - Starting job: reduce at SparkLR.scala:64
92704 [spark-akka.actor.default-dispatcher-3] INFO org.apache.spark.scheduler.DAGScheduler - Got job 3 (reduce at SparkLR.scala:64) with 2 output partitions (allowLocal=false)
92704 [spark-akka.actor.default-dispatcher-3] INFO org.apache.spark.scheduler.DAGScheduler - Final stage: Stage 3 (reduce at SparkLR.scala:64)
92704 [spark-akka.actor.default-dispatcher-3] INFO org.apache.spark.scheduler.DAGScheduler - Parents of final stage: List()
92707 [spark-akka.actor.default-dispatcher-3] INFO org.apache.spark.scheduler.DAGScheduler - Missing parents: List()
92707 [spark-akka.actor.default-dispatcher-3] INFO org.apache.spark.scheduler.DAGScheduler - Submitting Stage 3 (MappedRDD[4] at map at SparkLR.scala:62), which has no missing parents
92734 [spark-akka.actor.default-dispatcher-3] INFO org.apache.spark.scheduler.DAGScheduler - Submitting 2 missing tasks from Stage 3 (MappedRDD[4] at map at SparkLR.scala:62)
92734 [spark-akka.actor.default-dispatcher-3] INFO org.apache.spark.scheduler.TaskSchedulerImpl - Adding task set 3.0 with 2 tasks
92736 [spark-akka.actor.default-dispatcher-14] INFO org.apache.spark.scheduler.TaskSetManager - Starting task 3.0:1 as TID 8 on executor 4: master (PROCESS_LOCAL)
92759 [spark-akka.actor.default-dispatcher-14] INFO org.apache.spark.scheduler.TaskSetManager - Serialized task 3.0:1 as 551899 bytes in 23 ms
92760 [spark-akka.actor.default-dispatcher-14] INFO org.apache.spark.scheduler.TaskSetManager - Starting task 3.0:0 as TID 9 on executor 3: slaver02 (PROCESS_LOCAL)
92789 [spark-akka.actor.default-dispatcher-14] INFO org.apache.spark.scheduler.TaskSetManager - Serialized task 3.0:0 as 551899 bytes in 28 ms
93091 [Result resolver thread-2] INFO org.apache.spark.scheduler.TaskSetManager - Finished TID 8 in 356 ms on master (progress: 0/2)
93092 [spark-akka.actor.default-dispatcher-13] INFO org.apache.spark.scheduler.DAGScheduler - Completed ResultTask(3, 1)
96638 [Result resolver thread-3] INFO org.apache.spark.scheduler.TaskSetManager - Finished TID 9 in 3878 ms on slaver02 (progress: 1/2)
96638 [Result resolver thread-3] INFO org.apache.spark.scheduler.TaskSchedulerImpl - Remove TaskSet 3.0 from pool
96639 [spark-akka.actor.default-dispatcher-2] INFO org.apache.spark.scheduler.DAGScheduler - Completed ResultTask(3, 0)
96639 [spark-akka.actor.default-dispatcher-2] INFO org.apache.spark.scheduler.DAGScheduler - Stage 3 (reduce at SparkLR.scala:64) finished in 3.899 s
96639 [main] INFO org.apache.spark.SparkContext - Job finished: reduce at SparkLR.scala:64, took 3.935444196 s
On iteration 5
96646 [main] INFO org.apache.spark.SparkContext - Starting job: reduce at SparkLR.scala:64
96646 [spark-akka.actor.default-dispatcher-4] INFO org.apache.spark.scheduler.DAGScheduler - Got job 4 (reduce at SparkLR.scala:64) with 2 output partitions (allowLocal=false)
96646 [spark-akka.actor.default-dispatcher-4] INFO org.apache.spark.scheduler.DAGScheduler - Final stage: Stage 4 (reduce at SparkLR.scala:64)
96646 [spark-akka.actor.default-dispatcher-4] INFO org.apache.spark.scheduler.DAGScheduler - Parents of final stage: List()
96649 [spark-akka.actor.default-dispatcher-4] INFO org.apache.spark.scheduler.DAGScheduler - Missing parents: List()
96649 [spark-akka.actor.default-dispatcher-4] INFO org.apache.spark.scheduler.DAGScheduler - Submitting Stage 4 (MappedRDD[5] at map at SparkLR.scala:62), which has no missing parents
96677 [spark-akka.actor.default-dispatcher-4] INFO org.apache.spark.scheduler.DAGScheduler - Submitting 2 missing tasks from Stage 4 (MappedRDD[5] at map at SparkLR.scala:62)
96677 [spark-akka.actor.default-dispatcher-4] INFO org.apache.spark.scheduler.TaskSchedulerImpl - Adding task set 4.0 with 2 tasks
96678 [spark-akka.actor.default-dispatcher-16] INFO org.apache.spark.scheduler.TaskSetManager - Starting task 4.0:1 as TID 10 on executor 4: master (PROCESS_LOCAL)
96702 [spark-akka.actor.default-dispatcher-16] INFO org.apache.spark.scheduler.TaskSetManager - Serialized task 4.0:1 as 551896 bytes in 24 ms
96703 [spark-akka.actor.default-dispatcher-16] INFO org.apache.spark.scheduler.TaskSetManager - Starting task 4.0:0 as TID 11 on executor 3: slaver02 (PROCESS_LOCAL)
96726 [spark-akka.actor.default-dispatcher-16] INFO org.apache.spark.scheduler.TaskSetManager - Serialized task 4.0:0 as 551896 bytes in 23 ms
97554 [Result resolver thread-0] INFO org.apache.spark.scheduler.TaskSetManager - Finished TID 10 in 876 ms on master (progress: 0/2)
97555 [spark-akka.actor.default-dispatcher-4] INFO org.apache.spark.scheduler.DAGScheduler - Completed ResultTask(4, 1)
97810 [Result resolver thread-1] INFO org.apache.spark.scheduler.TaskSetManager - Finished TID 11 in 1108 ms on slaver02 (progress: 1/2)
97811 [Result resolver thread-1] INFO org.apache.spark.scheduler.TaskSchedulerImpl - Remove TaskSet 4.0 from pool
97811 [spark-akka.actor.default-dispatcher-14] INFO org.apache.spark.scheduler.DAGScheduler - Completed ResultTask(4, 0)
97811 [spark-akka.actor.default-dispatcher-14] INFO org.apache.spark.scheduler.DAGScheduler - Stage 4 (reduce at SparkLR.scala:64) finished in 1.130 s
97811 [main] INFO org.apache.spark.SparkContext - Job finished: reduce at SparkLR.scala:64, took 1.165505777 s
Final w: (5816.075967498865, 5222.008066011391, 5754.751978607454, 3853.1772062206846, 5593.565827145932, 5282.387874201054, 3662.9216051953435, 4890.78210340607, 4223.371512250292, 5767.368579668863)
[root@master spark-0.9]# [root@master spark-0.9]#
1.6从HDFS读取文件并运行WordCount
$ cd ~/spark-0.9
$ MASTER=spark://
192.168.159.129:7077 ./spark-shell
[root@master spark-0.9]# MASTER=spark://192.168.159.129:7077 bin/spark-shell
14/02/08 16:17:57 INFO HttpServer: Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
14/02/08 16:17:57 INFO HttpServer: Starting HTTP Server
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 0.9.0
/_/
Using Scala version 2.10.3 (Java HotSpot(TM) Client VM, Java 1.7.0_21)
Type in expressions to have them evaluated.
Type :help for more information.
14/02/08 16:18:04 INFO Slf4jLogger: Slf4jLogger started
14/02/08 16:18:04 INFO Remoting: Starting remoting
14/02/08 16:18:04 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://spark@master:57338]
14/02/08 16:18:04 INFO Remoting: Remoting now listens on addresses: [akka.tcp://spark@master:57338]
14/02/08 16:18:04 INFO SparkEnv: Registering BlockManagerMaster
14/02/08 16:18:04 INFO DiskBlockManager: Created local directory at /tmp/spark-local-20140208161804-d96e
14/02/08 16:18:04 INFO MemoryStore: MemoryStore started with capacity 297.0 MB.
14/02/08 16:18:04 INFO ConnectionManager: Bound socket to port 54967 with id = ConnectionManagerId(master,54967)
14/02/08 16:18:04 INFO BlockManagerMaster: Trying to register BlockManager
14/02/08 16:18:04 INFO BlockManagerMasterActor$BlockManagerInfo: Registering block manager master:54967 with 297.0 MB RAM
14/02/08 16:18:04 INFO BlockManagerMaster: Registered BlockManager
14/02/08 16:18:04 INFO HttpServer: Starting HTTP Server
14/02/08 16:18:04 INFO HttpBroadcast: Broadcast server started at http://192.168.159.129:51193
14/02/08 16:18:04 INFO SparkEnv: Registering MapOutputTracker
14/02/08 16:18:04 INFO HttpFileServer: HTTP File server directory is /tmp/spark-a63d283e-90dd-4a09-b2de-d9feda31f607
14/02/08 16:18:04 INFO HttpServer: Starting HTTP Server
14/02/08 16:18:05 INFO SparkUI: Started Spark Web UI at http://master:4040
14/02/08 16:18:05 INFO AppClient$ClientActor: Connecting to master spark://192.168.159.129:7077...
14/02/08 16:18:06 INFO SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app-20140208161806-0007
14/02/08 16:18:06 INFO AppClient$ClientActor: Executor added: app-20140208161806-0007/0 on worker-20140208153258-master-37524 (master:37524) with 1 cores
14/02/08 16:18:06 INFO SparkDeploySchedulerBackend: Granted executor ID app-20140208161806-0007/0 on hostPort master:37524 with 1 cores, 512.0 MB RAM
14/02/08 16:18:06 INFO AppClient$ClientActor: Executor added: app-20140208161806-0007/1 on worker-20140208153257-slaver01-49982 (slaver01:49982) with 1 cores
14/02/08 16:18:06 INFO SparkDeploySchedulerBackend: Granted executor ID app-20140208161806-0007/1 on hostPort slaver01:49982 with 1 cores, 512.0 MB RAM
14/02/08 16:18:06 INFO AppClient$ClientActor: Executor added: app-20140208161806-0007/2 on worker-20140208153257-slaver02-53193 (slaver02:53193) with 1 cores
14/02/08 16:18:06 INFO SparkDeploySchedulerBackend: Granted executor ID app-20140208161806-0007/2 on hostPort slaver02:53193 with 1 cores, 512.0 MB RAM
14/02/08 16:18:06 INFO AppClient$ClientActor: Executor updated: app-20140208161806-0007/1 is now RUNNING
14/02/08 16:18:06 INFO AppClient$ClientActor: Executor updated: app-20140208161806-0007/0 is now RUNNING
14/02/08 16:18:06 INFO AppClient$ClientActor: Executor updated: app-20140208161806-0007/2 is now RUNNING
14/02/08 16:18:07 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Created spark context..
Spark context available as sc.
scala> val file = sc.textFile("hdfs://192.168.159.129:9000//tmp-output101/part-r-00000")
14/02/08 17:16:29 INFO MemoryStore: ensureFreeSpace(132668) called with curMem=132636, maxMem=311387750
14/02/08 17:16:29 INFO MemoryStore: Block broadcast_1 stored as values to memory (estimated size 129.6 KB, free 296.7 MB)
file: org.apache.spark.rdd.RDD[String] = MappedRDD[3] at textFile at <console>:12
scala> val count = file.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_+_)
14/02/08 17:16:42 INFO FileInputFormat: Total input paths to process : 1
count: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[8] at reduceByKey at <console>:14
scala> count.collect()
14/02/08 17:16:49 INFO SparkContext: Starting job: collect at <console>:17
14/02/08 17:16:49 INFO DAGScheduler: Registering RDD 6 (reduceByKey at <console>:14)
14/02/08 17:16:49 INFO DAGScheduler: Got job 0 (collect at <console>:17) with 2 output partitions (allowLocal=false)
14/02/08 17:16:49 INFO DAGScheduler: Final stage: Stage 0 (collect at <console>:17)
14/02/08 17:16:49 INFO DAGScheduler: Parents of final stage: List(Stage 1)
14/02/08 17:16:49 INFO DAGScheduler: Missing parents: List(Stage 1)
14/02/08 17:16:49 INFO DAGScheduler: Submitting Stage 1 (MapPartitionsRDD[6] at reduceByKey at <console>:14), which has no missing parents
14/02/08 17:16:49 INFO DAGScheduler: Submitting 2 missing tasks from Stage 1 (MapPartitionsRDD[6] at reduceByKey at <console>:14)
14/02/08 17:16:49 INFO TaskSchedulerImpl: Adding task set 1.0 with 2 tasks
14/02/08 17:16:49 INFO TaskSetManager: Starting task 1.0:0 as TID 0 on executor 2: slaver02 (NODE_LOCAL)
14/02/08 17:16:49 INFO TaskSetManager: Serialized task 1.0:0 as 1955 bytes in 47 ms
14/02/08 17:16:49 INFO TaskSetManager: Starting task 1.0:1 as TID 1 on executor 1: slaver01 (NODE_LOCAL)
14/02/08 17:16:49 INFO TaskSetManager: Serialized task 1.0:1 as 1955 bytes in 0 ms
14/02/08 17:17:02 INFO TaskSetManager: Finished TID 1 in 13049 ms on slaver01 (progress: 0/2)
14/02/08 17:17:02 INFO DAGScheduler: Completed ShuffleMapTask(1, 1)
14/02/08 17:17:05 INFO TaskSetManager: Finished TID 0 in 15876 ms on slaver02 (progress: 1/2)
14/02/08 17:17:05 INFO DAGScheduler: Completed ShuffleMapTask(1, 0)
14/02/08 17:17:05 INFO DAGScheduler: Stage 1 (reduceByKey at <console>:14) finished in 15.877 s
14/02/08 17:17:05 INFO DAGScheduler: looking for newly runnable stages
14/02/08 17:17:05 INFO DAGScheduler: running: Set()
14/02/08 17:17:05 INFO DAGScheduler: waiting: Set(Stage 0)
14/02/08 17:17:05 INFO DAGScheduler: failed: Set()
14/02/08 17:17:05 INFO DAGScheduler: Missing parents for Stage 0: List()
14/02/08 17:17:05 INFO DAGScheduler: Submitting Stage 0 (MapPartitionsRDD[8] at reduceByKey at <console>:14), which is now runnable
14/02/08 17:17:05 INFO TaskSchedulerImpl: Remove TaskSet 1.0 from pool
14/02/08 17:17:05 INFO DAGScheduler: Submitting 2 missing tasks from Stage 0 (MapPartitionsRDD[8] at reduceByKey at <console>:14)
14/02/08 17:17:05 INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
14/02/08 17:17:05 INFO TaskSetManager: Starting task 0.0:0 as TID 2 on executor 2: slaver02 (PROCESS_LOCAL)
14/02/08 17:17:05 INFO TaskSetManager: Serialized task 0.0:0 as 1807 bytes in 1 ms
14/02/08 17:17:05 INFO TaskSetManager: Starting task 0.0:1 as TID 3 on executor 1: slaver01 (PROCESS_LOCAL)
14/02/08 17:17:05 INFO TaskSetManager: Serialized task 0.0:1 as 1807 bytes in 0 ms
14/02/08 17:17:05 INFO MapOutputTrackerMasterActor: Asked to send map output locations for shuffle 0 to spark@slaver01:43048
14/02/08 17:17:05 INFO MapOutputTrackerMaster: Size of output statuses for shuffle 0 is 147 bytes
14/02/08 17:17:05 INFO MapOutputTrackerMasterActor: Asked to send map output locations for shuffle 0 to spark@slaver02:42393
14/02/08 17:17:07 INFO TaskSetManager: Finished TID 2 in 1741 ms on slaver02 (progress: 0/2)
14/02/08 17:17:07 INFO DAGScheduler: Completed ResultTask(0, 0)
14/02/08 17:17:07 INFO TaskSetManager: Finished TID 3 in 2311 ms on slaver01 (progress: 1/2)
14/02/08 17:17:07 INFO DAGScheduler: Completed ResultTask(0, 1)
14/02/08 17:17:07 INFO DAGScheduler: Stage 0 (collect at <console>:17) finished in 2.321 s
14/02/08 17:17:07 INFO TaskSchedulerImpl: Remove TaskSet 0.0 from pool
14/02/08 17:17:07 INFO SparkContext: Job finished: collect at <console>:17, took 18.921360252 s
res1: Array[(String, Int)] = Array((Fate 1,1), (wayside. 1,1), (energetic 3,1), (fourth 7,1), (gouging 1,1), (Frances 1,1), (NOVEMBER 1,1), (about. 2,1), (propel 1,1), (beginning. 2,1), (faunas 1,1), (natural 26,1), (calves, 1,1), (tends 5,1), (sea-level. 1,1), (molluscs. 1,1), (supported 3,1), (stoneless 1,1), (Here 9,1), (Planet 1,1), (dwell 1,1), (behaviour--experimenting, 1,1), (Actual 1,1), (Sluggish 1,1), (Looked 1,1), (mysterious 12,1), (fauna, 2,1), (primaries 1,1), (Mercury's 2,1), (_instinctively_ 2,1), (females 2,1), (ELECTRICITY? 1,1), (claws, 1,1), (sedimentary 6,1), (Vertebrates 4,1), ("little-brain" 4,1), (fertilises 3,1), (word. 1,1), (all; 3,1), ("atomism." 1,1), (reactions. 3,1), (away. 10,1), (beginning, 2,1), (groove. 1,1), (Egg-eating 1,1), (depreciate 1,1), (know, ...
scala>
1.8停止 Spark集群
$ cd ~/spark-0.9
$ ./sbin/stop-all.sh
spark0.9分布式安装的更多相关文章
- spark0.9.0安装
利用周末的时间安装学习了下最近很火的Spark0.9.0(江湖传言,要革hadoop命,O(∩_∩)O),并体验了该框架下的机器学习包MLlib(spark解决的一个重点就是高效的运行迭代算法),下面 ...
- HBase基础和伪分布式安装配置
一.HBase(NoSQL)的数据模型 1.1 表(table),是存储管理数据的. 1.2 行键(row key),类似于MySQL中的主键,行键是HBase表天然自带的,创建表时不需要指定 1.3 ...
- Zookeeper 初体验之——伪分布式安装(转)
原文地址: http://blog.csdn.net/salonzhou/article/details/47401069 简介 Apache Zookeeper 是由 Apache Hadoop 的 ...
- hadoop2.6完全分布式安装HBase1.1
本文出自:http://wuyudong.com/archives/119 对于全分布式的HBase安装,需要通过hbase-site.xml文档来配置本机的HBase特性,由于各个HBase之间通过 ...
- CentOS7-64bit 编译 Hadoop-2.5.0,并分布式安装
摘要 CentOS7-64bit 编译 Hadoop-2.5.0,并分布式安装 目录[-] 1.系统环境说明 2.安装前的准备工作 2.1 关闭防火墙 2.2 检查ssh安装情况,如果没有则安装ssh ...
- Hadoop2.6.0完全分布式安装
本文地址:http://www.cnblogs.com/myresearch/p/hadoop-full-distributed-operation.html,转载请注明源地址. 我这边是使用了两台主 ...
- hadoop2.2.0+hive-0.10.0完全分布式安装方法
hadoop+hive-0.10.0完全分布式安装方法 1.jdk版本:jdk-7u60-linux-x64.tar.gz http://www.oracle.com/technetwork/cn/j ...
- hadoop-2.6.0为分布式安装
hadoop-2.6.0为分布式安装 伪分布模式集群规划(单节点)------------------------------------------------------------------- ...
- 整体认识flume:Flume介绍、分布式安装、常见问题及解决方案
问题导读 1.什么是flume? 2.flume包含哪些组件? 3.Flume在读取utf-8格式的文件时会出现解析不了时间戳,该如何解决? Flume是一个分布式.可靠.和高可用的海量日志采集.聚合 ...
随机推荐
- [Go] 如何正确地 抛出 错误 和 异常(error/panic/recover)?
序言 错误 和 异常 是两个不同的概念,非常容易混淆.很多程序员习惯将一切非正常情况都看做错误,而不区分错误和异常,即使程序中可能有异常抛出,也将异常及时捕获并转换成错误.从表面上看,一切皆错误的思路 ...
- java从文件中读取数据然后插入到数据库表中
实习工作中,完成了领导交给的任务,将搜集到的数据插入到数据库中,代码片段如下: static Connection getConnection() throws SQLException, IOExc ...
- STM32F103 TIM3定时器初始化程序
//TIM3 分频 #define TIM3_DIV1 (1-1) #define TIM3_DIV18 (18-1) #define TIM3_DIV72 (72-1) //************ ...
- AngularJS的Hello World
本篇体验AngularJS的Hello World,虽然简单,但体现了AnuglarJS的一些重要概念. 大致思路是这样的: ● 通常通过为hmtl元素添加AngularJS独有的属性来实现一些功能, ...
- 在ASP.NET MVC中使用Knockout实践09,自定义绑定
Knockout真正强大之处在于绑定机制,通过data-bind属性值体现绑定,不仅可以绑定值,还可以绑定事件,甚至可以自定义绑定. 从一个例子看Knockou的绑定机制 假设想给一个button元素 ...
- CSS background-position用法
相信很多喜欢研究网页界面的童鞋都遇到过一个奇妙的现象:网页中很多图片素材被合成在一张图片上. 起初小菜模仿网站的时候,经常遇到这个现象,那时候也不知道这时什么技术,人家的整张图片素材不会利用,只能用p ...
- WMAppManifest.xml
大家在编写Windows phone的程序的时候可能并没有关注WMAppManifest.xml,其实这个档案是记录了应用程式的相关属性描述,以及定义应用程式的功能性的..所以还是相当重要的一个文档, ...
- quartz 2.0 与1.0功能对比
日常开发来说,相对于1.0版,2.0版在使用上有以下几点需要注意的变化 变化一 比1.0多引用了C5.dll C5.dll 一个C#和其他CLI语言的泛型集合类..Net2.0及以上才可以使用.简介地 ...
- delphi services允许跨域访问
delphi services允许跨域访问 unit WebModuleUnit1; procedure TWebModule1.WebModule1DefaultHandlerAction(Send ...
- 学习 HTML+CSS 的书籍推荐
1.<CSS那些事儿> 本书专注于CSS技巧实例的讲解,由浅入深地分析了CSS样式在布局时所需要理解的原理.绕开随处可见的基础知识.网络中能随意搜索到的hack技巧,侧重原理分析,拓展读者 ...