octomap的简介
装载自高翔博士的博客:https://www.cnblogs.com/gaoxiang12/p/5041142.html
什么是octomap?
RGBD SLAM的目的有两个:估计机器人的轨迹,并建立正确的地图。地图有很多种表达方式,比如特征点地图、网格地图、拓扑地图等等。在《一起做》系列中,我们使用的地图形式主要是点云地图。在程序中,我们根据优化后的位姿,拼接点云,最后构成地图。这种做法很简单,但有一些明显的缺陷:
- 地图形式不紧凑。
点云地图通常规模很大,所以一个pcd文件也会很大。一张640×
- 480的图像,会产生30万个空间点,需要大量的存储空间。即使经过一些滤波之后,pcd文件也是很大的。而且讨厌之处在于,它的“大”并不是必需的。点云地图提供了很多不必要的细节。对于地毯上的褶皱、阴暗处的影子,我们并不特别关心这些东西。把它们放在地图里是浪费空间。
- 处理重叠的方式不够好。
在构建点云时,我们直接按照估计位姿拼在了一起。在位姿存在误差时,会导致地图出现明显的重叠。例如一个电脑屏变成了两个,原本方的边界变成了多边形。对重叠地区的处理方式应该更好一些。 - 难以用于导航
说起地图的用处,第一就是导航啦!有了地图,就可以指挥机器人从A点到B点运动,岂不是很方便的事?但是,给你一张点云地图,是否有些傻眼了呢?我至少得知道哪些地方可通过,哪些地方不可通过,才能完成导航呀!光有点是不够的!
octomap就是为此而设计的!亲,你没有看错,它可以优雅地压缩、更新地图,并且分辨率可调!它以八叉树(octotree,后面会讲)的形式存储地图,相比点云,能够省下大把的空间。octomap建立的地图大概是这样子的:(从左到右是不同的分辨率)
由于八叉树的原因,它的地图像是很多个小方块组成的(很像minecraft)。当分辨率较高时,方块很小;分辨率较低时,方块很大。每个方块表示该格被占据的概率。因此你可以查询某个方块或点“是否可以通过”,从而实现不同层次的导航。简而言之,环境较大时采用较低分辨率,而较精细的导航可采用较高分辨率。
小萝卜:师兄你这是介绍吗?真像广告啊……
octomap原理
本段会讲一些数学知识。如果你想“跑跑程序看效果”,可以跳过本段。
- 八叉树的表达
八叉树,也就是传说中有八个子节点的树!是不是很厉害呢?至于为什么要分成八个子节点,想象一下一个正方形的方块的三个面各切一刀,不就变成八块了嘛!如果你想象不出来,请看下图:
实际的数据结构呢,就是一个树根不断地往下扩,每次分成八个枝,直到叶子为止。叶子节点代表了分辨率最高的情况。例如分辨率设成0.01m,那么每个叶子就是一个1cm见方的小方块了呢!
每个小方块都有一个数描述它是否被占据。在最简单的情况下,可以用0-1两个数表示(太简单了所以没什么用)。通常还是用0~1之间的浮点数表示它被占据的概率。0.5表示未确定,越大则表示被占据的可能性越高,反之亦然。由于它是八叉树,那么一个节点的八个孩子都有一定的概率被占据或不被占据啦!(下图是一棵八叉树)
用树结构的好处时:当某个节点的子结点都“占据”或“不占据”或“未确定”时,就可以把它给剪掉!换句话说,如果没必要进一步描述更精细的结构(孩子节点)时,我们只要一个粗方块(父节点)的信息就够了。这可以省去很多的存储空间。因为我们不用存一个“全八叉树”呀!
2. 八叉树的更新
在八叉树中,我们用概率来表达一个叶子是否被占据。为什么不直接用0-1表达呢?因为在对环境的观测过程中,由于噪声的存在,某个方块有时可能被观测到是“占据”的,过了一会儿,在另一些方块中又是“不占据”的。有时“占据”的时候多,有时“不占据”的时候多。这一方面可能是由于环境本身有动态特征(例如桌子被挪走了),另一方面(多数时候)可能是由于噪声。根据八叉树的推导,假设t=1,…,T
时刻,观测的数据为z1,…,zT,那么第n个叶子节点记录的信息为:
小萝卜:哇!又一个好长的式子!这说的是啥师兄?
师兄:哎,写论文非得把一些简单的事情写得很复杂。为了解释这东西,先讲一下 logit 变换。该变换把一个概率p
变换到全实数空间R上:
这是一个可逆变换,反之有:
α
叫做log-odds。我们把用L()叶子节点的log-odds,那么(1)就可以写成:
小萝卜:哦!这个我就懂了!每新来一个就直接加到原来的上面,是吧?
师兄:对,此外还要加一个最大最小值的限制。最后转换回原来的概率即可。
八叉树中的父亲节点占据概率,可以根据孩子节点的数值进行计算。比较简单的是取平均值或最大值。如果把八叉树按照占据概率进行渲染,不确定的方块渲染成透明的,确定占据的渲染成不透明的,就能看到我们平时见到的那种东西啦!
octomap本身的数学原理还是简单的。不过它的可视化做的比较好。下面我们来讲讲如何下载、安装八叉树程序,并给出几个小的例程。
安装octomap
octomap的网页见:https://octomap.github.io
它的github源码在:https://github.com/OctoMap/octomap
它还有ROS下的安装方式:http://wiki.ros.org/octomap
在开发过程中,可能需要不断地查看它的API文档。你可以自己用doxygen生成一个,或者查看在线文档:http://octomap.github.io/octomap/doc/
为了保持简洁,我们不要求读者安装ROS,仅介绍单独的octomap。我的编译环境是ubuntu 14.04。ubuntu系列的应该都不会有太大问题。
1. 编译octomap
新建一个目录,拷贝octomap代码。如果没有git请安装git:sudo apt-get install git
git clone https://github.com/OctoMap/octomap
git会把代码拷贝到当前目录/octomap下。进入该目录,参照README.md进行安装。编译方式和普通的cmake程序一样,如果你学过《一起做》就应该很熟悉了:
1 mkdir build
2 cd build
3 cmake ..
4 make事实上,octomap的代码主要含两个模块:本身的octomap和可视化工具octovis。octovis依赖于qt4和qglviewer,所以如果你没有装这两个依赖,请安装它们:sudo apt-get install libqt4-dev qt4-qmake libqglviewer-dev
如果编译没有给出任何警告,恭喜你编译成功!
- 使用octovis查看示例地图
在bin/文件夹中,存放着编译出来可执行文件。为了直观起见,我们直接看一个示例地图:bin/octovis octomap/share/data/geb079.bt
octovis会打开这个地图并显示。它的UI是长这样的。你可以玩玩菜单里各种东西(虽然也不多,我就不一一介绍UI怎么玩了),能看出这是一层楼的扫描图。octovis是一个比较实用的工具,你生成的各种octomap地图都可以用它来看。(所以你可以把octovis放到/usr/local/bin/下,省得以后还要找。)
例程1:转换pcd到octomap
GUI玩够了吧?仅仅会用UI是不够滴,现在让我们开始编代码使用octomap这个库吧!
我为你准备了三个小例程。在前两个中,我会教你如何将一个pcd格式的点云地图转换为octomap地图。后一个中,我会讲讲如何根据g2o优化的轨迹,以类似slam的方式,把几个RGBD图像拼接出一个octomap。这对你研究SLAM会有一些帮助。所有的代码与数据都可以在我的github上找到。有关编译的信息,我写在这个代码的Readme中了,请在编译前看一眼如何编译这些代码。
源代码如下:src/pcd2octomap.cpp 这份代码将命令行参数1作为输入文件,参数2作为输出文件,把输入的pcd格式点云转换成octomap格式的点云。通过这个例子,你可以学会如何创建一个简单的OcTree对象并往里面添加新的点。
1 #include <iostream>
2 #include <assert.h>
3
4 //pcl
5 #include <pcl/io/pcd_io.h>
6 #include <pcl/point_types.h>
7
8 //octomap
9 #include <octomap/octomap.h>
10 using namespace std;
11
12 int main( int argc, char** argv )
13 {
14 if (argc != 3)
15 {
16 cout<<"Usage: pcd2octomap <input_file> <output_file>"<<endl;
17 return -1;
18 }
19
20 string input_file = argv[1], output_file = argv[2];
21 pcl::PointCloud<pcl::PointXYZRGBA> cloud;
22 pcl::io::loadPCDFile<pcl::PointXYZRGBA> ( input_file, cloud );
23
24 cout<<"point cloud loaded, piont size = "<<cloud.points.size()<<endl;
25
26 //声明octomap变量
27 cout<<"copy data into octomap..."<<endl;
28 // 创建八叉树对象,参数为分辨率,这里设成了0.05
29 octomap::OcTree tree( 0.05 );
30
31 for (auto p:cloud.points)
32 {
33 // 将点云里的点插入到octomap中
34 tree.updateNode( octomap::point3d(p.x, p.y, p.z), true );
35 }
36
37 // 更新octomap
38 tree.updateInnerOccupancy();
39 // 存储octomap
40 tree.writeBinary( output_file );
41 cout<<"done."<<endl;
42
43 return 0;
44 }
这个代码是相当直观的。在编译之后,它会产生一个可执行文件,叫做pcd2octomap,放在代码根目录的bin/文件夹下。你可以在代码根目录下这样调:
1 bin/pcd2octomap data/sample.pcd data/sample.bt
它会把data文件夹下的sample.pcd(一个示例pcd点云),转换成一个data/sample.bt的octomap文件。你可以比较下pcd点云与octomap的区别。下图是分别调用这些显示命令的结果。
1 pcl_viewer data/sample.pcd
2 octovis data/sample.ot
这个octomap里只存储了点的空间信息,而没有颜色信息。我按照高度给它染色了,否则它应该就是灰色的。通过octomap,我们能查看每个小方块是否可以通行,从而实现导航的工作。
以下是对代码的一些注解:
注1:有关如何读取pcd文件,你可以参见pcl官网的tutorial。不过这件事情十分简单,所以我相信你也能直接看懂。
注2:31行采用了C++11标准的for循环,它会让代码看起来稍微简洁一些。如果你的编译器比较老而不支持c++11,你可以自己将它改成传统的for循环的样式。
注3:octomap存储的文件后缀名是.bt(二进制文件)和.ot(普通文件),前者相对更小一些。不过octomap文件普遍都很小,所以也不差这么些容量。如果你存成了其他后缀名,octovis可能认不出来。
例程2:加入色彩信息
第一个示例中,我们将pcd点云转换为octomap。但是pcd点云是有颜色信息的,能否在octomap中也保存颜色信息呢?答案是可以的。octomap提供了ColorOcTree类,能够帮你存储颜色信息。下面我们就来做一个保存颜色信息的示例。代码见:src/pcd2colorOctomap.cpp
1 #include <iostream>
2 #include <assert.h>
3
4 //pcl
5 #include <pcl/io/pcd_io.h>
6 #include <pcl/point_types.h>
7
8 //octomap
9 #include <octomap/octomap.h>
10 #include <octomap/ColorOcTree.h>
11
12 using namespace std;
13
14 int main( int argc, char** argv )
15 {
16 if (argc != 3)
17 {
18 cout<<"Usage: pcd2colorOctomap <input_file> <output_file>"<<endl;
19 return -1;
20 }
21
22 string input_file = argv[1], output_file = argv[2];
23 pcl::PointCloud<pcl::PointXYZRGBA> cloud;
24 pcl::io::loadPCDFile<pcl::PointXYZRGBA> ( input_file, cloud );
25
26 cout<<"point cloud loaded, piont size = "<<cloud.points.size()<<endl;
27
28 //声明octomap变量
29 cout<<"copy data into octomap..."<<endl;
30 // 创建带颜色的八叉树对象,参数为分辨率,这里设成了0.05
31 octomap::ColorOcTree tree( 0.05 );
32
33 for (auto p:cloud.points)
34 {
35 // 将点云里的点插入到octomap中
36 tree.updateNode( octomap::point3d(p.x, p.y, p.z), true );
37 }
38
39 // 设置颜色
40 for (auto p:cloud.points)
41 {
42 tree.integrateNodeColor( p.x, p.y, p.z, p.r, p.g, p.b );
43 }
44
45 // 更新octomap
46 tree.updateInnerOccupancy();
47 // 存储octomap, 注意要存成.ot文件而非.bt文件
48 tree.write( output_file );
49 cout<<"done."<<endl;
50
51 return 0;
52 }
大部分代码和刚才是一样的,除了把OcTree改成ColorOcTree,以及调用integrateNodeColor来混合颜色之外。这段代码会编译出pcd2colorOctomap这个程序,完成带颜色的转换。不过,后缀名改成了.ot文件。
1 bin/pcd2colorOctomap data/sample.pcd data/sample.ot
颜色信息能够更好地帮助我们辨认结果是否正确,给予一个直观的印象。是不是好看了一些呢?
例程3:更好的拼接与转换
前两个例程中,我们都是对单个pcd文件进行了处理。实际做slam时,我们需要拼接很多帧的octomap。为了做这样一个示例,我从自己的实验数据中取出了一小段。这一小段总共含有五张图像(因为github并不适合传大量数据),它们存放在data/rgb_index和data/dep_index下。我的slam程序估计了这五个关键帧的位置,放在data/trajectory.txt中。它的格式是:帧编号 x y z qx qy qz qw (位置+姿态四元数)。事实上它是从一个g2o文件中拷出来的。你可以用g2o_viewer data/result_after.g2o来看整个轨迹。
54 -0.228993 0.00645704 0.0287837 -0.0004327 -0.113131 -0.0326832 0.993042
144 -0.50237 -0.0661803 0.322012 -0.00152174 -0.32441 -0.0783827 0.942662
230 -0.970912 -0.185889 0.872353 -0.00662576 -0.278681 -0.0736078 0.957536
313 -1.41952 -0.279885 1.43657 -0.00926933 -0.222761 -0.0567118 0.973178
346 -1.55819 -0.301094 1.6215 -0.02707 -0.250946 -0.0412848 0.966741
现在我们要做的事,就是根据trajectory.txt里记录的信息,把几个RGBD图拼成一个octomap。这也是所谓的用octomap来建图。我写了一个示例,不知道你能否读懂呢?src/joinMap.cpp
1 #include <iostream>
2 #include <vector>
3
4 // octomap
5 #include <octomap/octomap.h>
6 #include <octomap/ColorOcTree.h>
7 #include <octomap/math/Pose6D.h>
8
9 // opencv 用于图像数据读取与处理
10 #include <opencv2/core/core.hpp>
11 #include <opencv2/imgproc/imgproc.hpp>
12 #include <opencv2/highgui/highgui.hpp>
13
14 // 使用Eigen的Geometry模块处理3d运动
15 #include <Eigen/Core>
16 #include <Eigen/Geometry>
17
18 // pcl
19 #include <pcl/common/transforms.h>
20 #include <pcl/point_types.h>
21
22 // boost.format 字符串处理
23 #include <boost/format.hpp>
24
25 using namespace std;
26
27 // 全局变量:相机矩阵
28 // 更好的写法是存到参数文件中,但为方便起见我就直接这样做了
29 float camera_scale = 1000;
30 float camera_cx = 325.5;
31 float camera_cy = 253.5;
32 float camera_fx = 518.0;
33 float camera_fy = 519.0;
34
35 int main( int argc, char** argv )
36 {
37 // 读关键帧编号
38 ifstream fin( "./data/keyframe.txt" );
39 vector<int> keyframes;
40 vector< Eigen::Isometry3d > poses;
41 // 把文件 ./data/keyframe.txt 里的数据读取到vector中
42 while( fin.peek() != EOF )
43 {
44 int index_keyframe;
45 fin>>index_keyframe;
46 if (fin.fail()) break;
47 keyframes.push_back( index_keyframe );
48 }
49 fin.close();
50
51 cout<<"load total "<<keyframes.size()<<" keyframes. "<<endl;
52
53 // 读关键帧姿态
54 // 我的代码中使用了Eigen来存储姿态,类似的,也可以用octomath::Pose6D来做这件事
55 fin.open( "./data/trajectory.txt" );
56 while( fin.peek() != EOF )
57 {
58 int index_keyframe;
59 float data[7]; // 三个位置加一个姿态四元数x,y,z, w,ux,uy,uz
60 fin>>index_keyframe;
61 for ( int i=0; i<7; i++ )
62 {
63 fin>>data[i];
64 cout<<data[i]<<" ";
65 }
66 cout<<endl;
67 if (fin.fail()) break;
68 // 注意这里的顺序。g2o文件四元数按 qx, qy, qz, qw来存
69 // 但Eigen初始化按照qw, qx, qy, qz来做
70 Eigen::Quaterniond q( data[6], data[3], data[4], data[5] );
71 Eigen::Isometry3d t(q);
72 t(0,3) = data[0]; t(1,3) = data[1]; t(2,3) = data[2];
73 poses.push_back( t );
74 }
75 fin.close();
76
77 // 拼合全局地图
78 octomap::ColorOcTree tree( 0.05 ); //全局map
79
80 // 注意我们的做法是先把图像转换至pcl的点云,进行姿态变换,最后存储成octomap
81 // 因为octomap的颜色信息不是特别方便处理,所以采用了这种迂回的方式
82 // 所以,如果不考虑颜色,那不必转成pcl点云,而可以直接使用octomap::Pointcloud结构
83
84 for ( size_t i=0; i<keyframes.size(); i++ )
85 {
86 pcl::PointCloud<pcl::PointXYZRGBA> cloud;
87 cout<<"converting "<<i<<"th keyframe ..." <<endl;
88 int k = keyframes[i];
89 Eigen::Isometry3d& pose = poses[i];
90
91 // 生成第k帧的点云,拼接至全局octomap上
92 boost::format fmt ("./data/rgb_index/%d.ppm" );
93 cv::Mat rgb = cv::imread( (fmt % k).str().c_str() );
94 fmt = boost::format("./data/dep_index/%d.pgm" );
95 cv::Mat depth = cv::imread( (fmt % k).str().c_str(), -1 );
96
97 // 从rgb, depth生成点云,运算方法见《一起做》第二讲
98 // 第一次遍历用于生成空间点云
99 for ( int m=0; m<depth.rows; m++ )
100 for ( int n=0; n<depth.cols; n++ )
101 {
102 ushort d = depth.ptr<ushort> (m) [n];
103 if (d == 0)
104 continue;
105 float z = float(d) / camera_scale;
106 float x = (n - camera_cx) * z / camera_fx;
107 float y = (m - camera_cy) * z / camera_fy;
108 pcl::PointXYZRGBA p;
109 p.x = x; p.y = y; p.z = z;
110
111 uchar* rgbdata = &rgb.ptr<uchar>(m)[n*3];
112 uchar b = rgbdata[0];
113 uchar g = rgbdata[1];
114 uchar r = rgbdata[2];
115
116 p.r = r; p.g = g; p.b = b;
117 cloud.points.push_back( p );
118 }
119 // 将cloud旋转之后插入全局地图
120 pcl::PointCloud<pcl::PointXYZRGBA>::Ptr temp( new pcl::PointCloud<pcl::PointXYZRGBA>() );
121 pcl::transformPointCloud( cloud, *temp, pose.matrix() );
122
123 octomap::Pointcloud cloud_octo;
124 for (auto p:temp->points)
125 cloud_octo.push_back( p.x, p.y, p.z );
126
127 tree.insertPointCloud( cloud_octo,
128 octomap::point3d( pose(0,3), pose(1,3), pose(2,3) ) );
129
130 for (auto p:temp->points)
131 tree.integrateNodeColor( p.x, p.y, p.z, p.r, p.g, p.b );
132 }
133
134 tree.updateInnerOccupancy();
135 tree.write( "./data/map.ot" );
136
137 cout<<"done."<<endl;
138
139 return 0;
140
141 }
大部分需要解释的地方,我都在程序里写了注解。我用了一种稍微有些迂回的方式:先把图像转成pcl的点云,变换后再放到octotree中。这种做法的原因是比较便于处理颜色,因为我希望做出带有颜色的地图。如果你不关心颜色,完全可以不用pcl,直接用octomap自带的octomap::pointcloud来完成这件事。
insertPointCloud会比单纯的插入点更好一些。octomap里的pointcloud是一种射线的形式,只有末端才存在被占据的点,中途的点则是没被占据的。这会使一些重叠地方处理的更好。
最后,五帧数据拼接出来的点云大概长这样:
可能并不是特别完整,毕竟我们只用了五张图。这些数据来自于nyud数据集的dining_room序列,一个比较完整的图应该是这样的:
至少是比纯粹点云好些了吧?好了,关于例程就介绍到这里。如果你准备使用octomap,这仅仅是个入门。你需要去查看它的文档,了解它的类结构,以及一些重要类的使用、实现方式。
《SLAM拾萃》第一讲,octomap,就为大家介绍到这里啦。最近我发现自己写东西,讲东西都越来越长,所以请原谅我越来越啰嗦的写作和说话风格。希望它能帮助你!我们下讲再见!
如果你觉得我的博客有帮助,可以进行几块钱的小额赞助,帮助我把博客写得更好。(虽然我也是从别处学来的这招……)
小萝卜:师兄你学坏了啊!
参考文献
[1]. OctoMap: An efficient probabilistic 3D mapping framework based on octrees, Hornung, Armin and Wurm, Kai M and Bennewitz, Maren and Stachniss, Cyrill and Burgard, Wolfram, Autonomous Robots, 2013.
[2]. OctoMap: A probabilistic, flexible, and compact 3D map representation for robotic systems, Wurm, Kai M and Hornung, Armin and Bennewitz, Maren and Stachniss, Cyrill and Burgard, Wolfram, ICRA 2010.
octomap的简介的更多相关文章
- octomap中3d-rrt路径规划
路径规划 碰撞冲突检测 在octomap中制定起止点,目标点,使用rrt规划一条路径出来,没有运动学,动力学的限制,只要能避开障碍物. 效果如下: #include "ros/ros.h&q ...
- ASP.NET Core 1.1 简介
ASP.NET Core 1.1 于2016年11月16日发布.这个版本包括许多伟大的新功能以及许多错误修复和一般的增强.这个版本包含了多个新的中间件组件.针对Windows的WebListener服 ...
- MVVM模式和在WPF中的实现(一)MVVM模式简介
MVVM模式解析和在WPF中的实现(一) MVVM模式简介 系列目录: MVVM模式解析和在WPF中的实现(一)MVVM模式简介 MVVM模式解析和在WPF中的实现(二)数据绑定 MVVM模式解析和在 ...
- Cassandra简介
在前面的一篇文章<图形数据库Neo4J简介>中,我们介绍了一种非常流行的图形数据库Neo4J的使用方法.而在本文中,我们将对另外一种类型的NoSQL数据库——Cassandra进行简单地介 ...
- REST简介
一说到REST,我想大家的第一反应就是“啊,就是那种前后台通信方式.”但是在要求详细讲述它所提出的各个约束,以及如何开始搭建REST服务时,却很少有人能够清晰地说出它到底是什么,需要遵守什么样的准则. ...
- Microservice架构模式简介
在2014年,Sam Newman,Martin Fowler在ThoughtWorks的一位同事,出版了一本新书<Building Microservices>.该书描述了如何按照Mic ...
- const,static,extern 简介
const,static,extern 简介 一.const与宏的区别: const简介:之前常用的字符串常量,一般是抽成宏,但是苹果不推荐我们抽成宏,推荐我们使用const常量. 执行时刻:宏是预编 ...
- HTTPS简介
一.简单总结 1.HTTPS概念总结 HTTPS 就是对HTTP进行了TLS或SSL加密. 应用层的HTTP协议通过传输层的TCP协议来传输,HTTPS 在 HTTP和 TCP中间加了一层TLS/SS ...
- 【Machine Learning】机器学习及其基础概念简介
机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
随机推荐
- XMPP协议实现即时通讯底层书写 (一)--从RFC6121阅读開始
Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence ok,额瑞巴蒂,说好的阅读RFC61 ...
- SpringMVC由浅入深day01_13springmvc和struts2的区别_14问题
13 springmvc和struts2的区别 1.springmvc是基于方法开发(一个url对应一个方法),请求参数传递到方法的形参,可以设计为单例或多例(建议单例),struts2是基于类开发, ...
- [转]Tomcat的部署
1.1 Context descriptors Tomcat4中的Manager和Admin管理工具其实就是利用它来部署的.在Tomcat5中提出了Context descriptor这个概念,且为其 ...
- ISO27001信息安全管理体系
0x00 前言 初入甲方,刚开始接触的应该就是ISO27001信息安全管理体系,你拿到的应该就是一整套安全管理类的文档.在甲方,稍微有点规模的公司很注重制度和流程,岗位职责分工明细,那么这些安全管理制 ...
- Four Ways to Create a Thread
Blaise Pascal Magazine Rerun #5: Four Ways to Create a Thread This article was originally written ...
- 使用 Beautiful Soup
Beautiful Soup 用法: (1) 前面我们爬取一个网页,都是使用正则表达式来提取想要的信息,但是这种方式比较复杂,一旦有一个地方写错,就匹配不出来了,因此我们可以使用 Beautiful ...
- Java实现简单的正则表达式匹配
import java.util.regex.Pattern; public class Test_REG { public static void main(String[] args) { //只 ...
- 树莓派3b 串口通信初次尝试
准备工作: 1. 安装wiringPi 2. 修改config.txt sudo nano /boot/config.txt 在文件的末尾添加: dtoverlay=pi3-miniuart-bt 3 ...
- echarts.js多图表数据展示使用小结
echarts api文档: http://echarts.baidu.com/echarts2/doc/doc.html echarts demo示例: http://echarts.baidu.c ...
- kaggle 泰坦尼克号问题总结
学习了机器学习这么久,第一次真正用机器学习中的方法解决一个实际问题,一步步探索,虽然最后结果不是很准确,仅仅达到了0.78647,但是真是收获很多,为了防止以后我的记忆虫上脑,我决定还是记录下来好了. ...