129. Inheritance

time limit per test: 0.25 sec. 
memory limit per test: 4096 KB

The old King decided to divide the Kingdom into parts among his three sons. Each part is a polygonal area. Taking into account the bad temper of the middle son the King gave him a part of Kingdom such that moving straight from any place of this part to any other place of this part he will not cross the boundary.
There are several mineral deposits in the Kingdom. Each mineral deposit looks like a straight line segment. The middle son wants to know what part of mineral deposits is located inside his territory (not including the boundaries).

Input

The first line contains an integer N (3<=N<=400) - the number of vertexes of the polygon boundaring the territory of King's middle son. Each i-th line of the next N lines contains pair of integers xi, yi (0<=xi,yi<=30000) - a position of the i-th vertex (3<=i<=400). The vertexes are given in random order. There are no any three vertexes laying on a straight line. The next line includes the only integer M (2<=M<=1000) - the number of mineral deposits in the Kingdom. Each j-th line of the next M lines contains two pairs of integers aj1, bj1 - point of the beginning and aj2, bj2 - point of the end of the j-th mineral deposit (0<=aj1,bj1,aj2,bj2<=30000, for 1<=j<=M). The numbers in each line are divided by spaces.

Output

Output file should contain M lines. Each j-th line should contain a real number Lj calculated with precision 0.01 - the lehgth of the middle son's part of j-th mineral deposit.

Sample Input

3
1 1
6 1
1 6
4
1 2 1 4
2 2 2 4
4 2 4 4
6 2 6 4

Sample Output

0
2
1
0 思路很简单,就是涉及到了多个计算几何的知识点
1 领地点都是凸包上的点,需要按照凸包排个序,确定了左下点之后按逆时针排个序就行
2 对于线段,完全列举一下凸包的所有边,看有多少交点即可(一定只有<=2个)
3 对于和凸包有交点的线段,如果两个相邻点的中点在凸包内,那么这俩因为本来就是边界了,所以一定这一段在凸包里,如果没有交点,要是线段中点在凸包内也一样
4 如何判断线段交点?...设线段A=P+t1*v(v是方向向量,P是起点),B=Q+t2*w(w向量,Q起点),u=P-Q,则t1=cross(w,u)/cross(v,w),t2=cross(v,u)/cross(v,w),线段交点要满足t1,t2属于[0,1],满足条件后带入即可
5 如何确定点是否在凸包内?设凸包点集为P,(P按凸包已经排好了,)对于所有的线段p[(i+1)%n],p[i] ,因为P构成了凸包,所以只需要都在左侧即可.(转角法缩略版),画个图看看就懂
注意:使用复数的叉积不知道为什么不行?也许是我的姿势不对
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const double eps=1e-8;
int dcmp(double d){
if(fabs(d)<eps)return 0;
return d>0?1:-1;
}
struct pnt{
double x,y;
pnt():x(0),y(0){}
pnt(double tx,double ty):x(tx),y(ty){}
pnt operator -(pnt p2){
pnt newp(x-p2.x,y-p2.y);
return newp;
}
pnt operator +(pnt p2){
pnt newp(x+p2.x,y+p2.y);
return newp;
}
pnt operator *(double d){
pnt newp(x*d,y*d);
return newp;
}
pnt operator /(double d){
pnt newp(x/d,y/d);
return newp;
}
double dis(pnt p2){
return sqrt((x-p2.x)*(x-p2.x)+(y-p2.y)*(y-p2.y));
}
bool operator ==(pnt p2){
if(dcmp(x-p2.x)==0&&dcmp(y-p2.y)==0)return true;
return false;
}
};
pnt p[2000],inset[2000][2],seg[2000][2];
int n,m,len[2000];
double cross(pnt p1,pnt p2){
return p1.x*p2.y-p1.y*p2.x;
}
bool cmpx(pnt p1,pnt p2){
if(p1.x!=p2.x)return p1.x<p2.x;
return p1.y<p2.y;
}
bool cmp(pnt p1,pnt p2){
return cross(p1-p[0],p2-p[0])<0;
} int isPointInConvexPolygon(pnt p1){
for(int i=0;i<n;i++){
pnt A=pnt(p[(i+1)%n].x-p[i].x,p[(i+1)%n].y-p[i].y);
pnt B=pnt(p1.x-p[i].x,p1.y-p[i].y);
int fl=dcmp(cross(A,B));
if(fl>0)return 0;
if(fl==0){
int maxx=max(p[(i+1)%n].x,p[i].x);
int minx=min(p[(i+1)%n].x,p[i].x);
int maxy=max(p[(i+1)%n].y,p[i].y);
int miny=min(p[(i+1)%n].y,p[i].y);
if(minx<=p1.x&&maxx>=p1.x&&miny<=p1.y&&maxy>=p1.y)return -1;
}
}
return 1;
}
void getinsertpoint(){
for(int i=0;i<n;i++){
pnt v=p[(i+1)%n]-p[i];
for(int j=0;j<m;j++){
pnt w=seg[j][1]-seg[j][0];
if(dcmp(cross(v,w))==0)continue;
pnt u=p[i]-seg[j][0];
double t=cross(w,u)/cross(v,w);
double t2=cross(v,u)/cross(v,w);
if(t2+eps>1||t2+eps<0)continue;
if(t<1+eps&&t+eps>0){
pnt newp=p[i]+v*t;
bool fl=true;
for(int k=0;k<len[j];k++){
if(newp==inset[j][k])fl=false;
}
if(fl)inset[j][len[j]++]=newp;
}
}
}
}
void getlength(){
for(int i=0;i<m;i++){
double leng=0;
if(len[i]==2){
pnt mid1=(seg[i][0]+inset[i][0])/2;
int stamid=isPointInConvexPolygon(mid1);
if(stamid==1){
leng+=seg[i][0].dis(inset[i][0]);
}
mid1=(inset[i][0]+inset[i][1])/2;
stamid=isPointInConvexPolygon(mid1);
if(stamid==1){
leng+=inset[i][0].dis(inset[i][1]);
}
mid1=(seg[i][1]+inset[i][1])/2;
stamid=isPointInConvexPolygon(mid1);
if(stamid==1){
leng+=seg[i][1].dis(inset[i][1]);
}
}
else if(len[i]==1){
pnt mid1=(seg[i][0]+inset[i][0])/2;
int stamid=isPointInConvexPolygon(mid1);
if(stamid==1){
leng+=seg[i][0].dis(inset[i][0]);
}
mid1=(seg[i][1]+inset[i][0])/2;
stamid=isPointInConvexPolygon(mid1);
if(stamid==1){
leng+=seg[i][1].dis(inset[i][0]);
}
}
else if(len[i]==0){
pnt mid1=(seg[i][1]+seg[i][0])/2;
int stamid=isPointInConvexPolygon(mid1);
if(stamid==1){
leng+=seg[i][1].dis(seg[i][0]);
}
}
printf("%.2f\n",leng);
}
}
int main(){
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%lf%lf",&p[i].x,&p[i].y);
}
scanf("%d",&m);
for(int i=0;i<m;i++){
scanf("%lf%lf%lf%lf",&seg[i][0].x,&seg[i][0].y,&seg[i][1].x,&seg[i][1].y);
}
for(int i=0;i<m;i++){
sort(seg[i],seg[i]+2,cmpx);
}
sort(p,p+n,cmpx);
sort(p+1,p+n,cmp);
getinsertpoint();
for(int i=0;i<m;i++){
sort(inset[i],inset[i]+len[i],cmpx);
}
getlength();
return 0;
}

  

sgu 129 Inheritance 凸包,线段交点,计算几何 难度:2的更多相关文章

  1. hdu 2857:Mirror and Light(计算几何,点关于直线的对称点,求两线段交点坐标)

    Mirror and Light Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  2. 谈谈"求线段交点"的几种算法(js实现,完整版)

    "求线段交点"是一种非常基础的几何计算, 在很多游戏中都会被使用到. 下面我就现学现卖的把最近才学会的一些"求线段交点"的算法总结一下, 希望对大家有所帮助.  ...

  3. EDU 50 E. Covered Points 利用克莱姆法则计算线段交点

    E. Covered Points 利用克莱姆法则计算线段交点.n^2枚举,最后把个数开方,从ans中减去. ans加上每个线段的定点数, 定点数用gcs(△x , △y)+1计算. #include ...

  4. Inheritance - SGU 129(线段与多边形相交的长度)

    题目大意:给一个凸多边形(点不是按顺序给的),然后计算给出的线段在这个凸多边形里面的长度,如果在边界不计算. 分析:WA2..WA3...WA4..WA11...WA的无话可说,总之细节一定考虑清楚, ...

  5. hdu 1086(计算几何入门题——计算线段交点个数)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1086 You can Solve a Geometry Problem too Time Limit: 2 ...

  6. 【计算几何初步-线段相交】【HDU1089】线段交点

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  7. Codeforces Gym100543B 计算几何 凸包 线段树 二分/三分 卡常

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF-Gym100543B.html 题目传送门 - CF-Gym100543B 题意 给定一个折线图,对于每一条 ...

  8. SGU 110. Dungeon 计算几何 难度:3

    110. Dungeon time limit per test: 0.25 sec. memory limit per test: 4096 KB The mission of space expl ...

  9. poj 3348 Cows 凸包 求多边形面积 计算几何 难度:0 Source:CCC207

    Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7038   Accepted: 3242 Description ...

随机推荐

  1. Go第四篇之流程控制

    流程控制是每种编程语言控制逻辑走向和执行次序的重要部分,流程控制可以说是一门语言的“经脉”. Go 语言的常用流程控制有 if 和 for,而 switch 和 goto 主要是为了简化代码.降低重复 ...

  2. Wannafly14挑战赛 C(tarjan缩点)题解

    题目:牛客题目链接 思路:这道题有点像这道题 先缩点,缩完之后判断一下整个强连通分量入度是不是0,如果是的话向ans压入该强连通分量最小的那个值.最后排序一下ans输出就行了. 思路一下就想到了,就是 ...

  3. Slf4j+LogBack使用参考

    博文参考: 最简例子:https://blog.csdn.net/johnson_moon/article/details/77532583 Web中配置:https://blog.csdn.net/ ...

  4. 【第二十九章】 springboot + zipkin + mysql

    zipkin的数据存储可以存在4个地方: 内存(仅用于测试,数据不会持久化,zipkin-server关掉,数据就没有了) 这也是之前使用的 mysql 可能是最熟悉的方式 es Cassandra ...

  5. Linux mysql 添加远程连接

    方法/步骤 第一步 远程连接上Linux系统,确保Linux系统已经安装上了MySQL数据库.登陆数据库. mysql -u$user -p $pwd 第二步 创建用户用来远程连接 GRANT ALL ...

  6. 【Python】【fmt】

      [练习]    #练习1:format print(format(3.44444,'.3e')) #3.444e+00 #练习2:findall() & finditer()import ...

  7. pyqt 实现的俄罗斯方块

    from PyQt5.QtWidgets import QMainWindow, QFrame, QDesktopWidget, QApplication from PyQt5.QtCore impo ...

  8. mysql 开启远程访问

    # vi /etc/mysql/my.cnf修改 bind-address = 127.0.0.1  为  bind-address = 0.0.0.0 修改完成后重启mysql服务 # sudo / ...

  9. 算法笔记--priority_queue

    算法笔记 priority_queue<int>que;//默认大顶堆 或者写作:priority_queue<int,vector<int>,less<int&g ...

  10. Paket介绍

    在国外.NET社区有一个很火的话题是Packet(https://fsprojects.github.io/Paket/index.html ),它本质上是Nuget 之外的另一种方式管理.NET项目 ...