转载自:http://lxw1234.com/archives/2016/10/772.htm

Spark2.0新增了Structured Streaming,它是基于SparkSQL构建的可扩展和容错的流式数据处理引擎,使得实时流式数据计算可以和离线计算采用相同的处理方式(DataFrame&SQL)。Structured Streaming顾名思义,它将数据源和计算结果都映射成一张”结构化”的表,在计算的时候以结构化的方式去操作数据流,大大方便和提高了数据开发的效率。

Spark2.0之前,流式计算通过Spark Streaming进行:

使用Spark Streaming每次只能消费当前批次内的数据,当然可以通过window操作,消费过去一段时间(多个批次)内的数据。举个简例子,需要每隔10秒,统计当前小时的PV和UV,在数据量特别大的情况下,使用window操作并不是很好的选择,通常是借助其它如Redis、HBase等完成数据统计。

Structured Streaming将数据源和计算结果都看做是无限大的表,数据源中每个批次的数据,经过计算,都添加到结果表中作为行。

先试试官方给的例子,在本地启动NetCat: nc -lk 9999

在另一个会话中:

cd $SPARK_HOME/bin
./spark-shell(以local模式进入spark-shell命令行),运行下面的程序:
    import org.apache.spark.sql.functions._
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.appName("StructuredNetworkWordCount").getOrCreate() import spark.implicits._
val lines = spark.readStream.format("socket").option("host", "localhost").option("port", ).load() val words = lines.as[String].flatMap(_.split(" "))
val wordCounts = words.groupBy("value").count() val query = wordCounts.writeStream.outputMode("complete").format("console").start()
query.awaitTermination()

在NetCat会话中输入”apache spark”,spark-shell中显示:

在NetCat会话中分两次再输入”apache hadoop”,”lxw1234.com hadoop spark”, spark-shell中显示:

可以看到,每个Batch显示的结果,都是完整的WordCount统计结果,这便是结算结果输出中的完整模式(Complete Mode)。

关于结算结果的输出,有三种模式:

  1. Complete Mode:输出最新的完整的结果表数据。
  2. Append Mode:只输出结果表中本批次新增的数据,其实也就是本批次中的数据;
  3. Update Mode(暂不支持):只输出结果表中被本批次修改的数据;

这些Output,可以直接通过连接器(如MySQL JDBC、HBase API等)写入外部存储系统。

再看看Append模式,
注意:Append模式不支持基于数据流上的聚合操作(Append output mode not supported when there
are streaming aggregations on streaming DataFrames/DataSets);

    import org.apache.spark.sql.functions._
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.appName("StructuredNetworkWordCount").getOrCreate() import spark.implicits._
val lines = spark.readStream.format("socket").option("host", "localhost").option("port", ).load() val words = lines.as[String].flatMap(_.split(" ")) val query = words.writeStream.outputMode("append").format("console").start()
query.awaitTermination()

在NetCat中分三次输入:
apache spark
apache hadoop
lxw1234.com hadoop spark

spark-shell中显示:

只有当前批次的数据。

学习Spark2.0中的Structured Streaming(一)的更多相关文章

  1. Spark Streaming揭秘 Day29 深入理解Spark2.x中的Structured Streaming

    Spark Streaming揭秘 Day29 深入理解Spark2.x中的Structured Streaming 在Spark2.x中,Spark Streaming获得了比较全面的升级,称为St ...

  2. 浅谈Spark2.x中的Structured Streaming

    在Spark2.x中,Spark Streaming获得了比较全面的升级,称为Structured Streaming,和之前的很不同,功能更强大,效率更高,跟其他的组件整合性也更好. 连续应用程序c ...

  3. Spark3.0分布,Structured Streaming UI登场

    近日,在Spark开源十周年之际,Spark3.0发布了,这个版本大家也是期盼已久.登录Spark官网,最新的版本已经是3.0.而且不出意外,对于Structured Streaming进行了再一次的 ...

  4. DataFlow编程模型与Spark Structured streaming

    流式(streaming)和批量( batch):流式数据,实际上更准确的说法应该是unbounded data(processing),也就是无边界的连续的数据的处理:对应的批量计算,更准确的说法是 ...

  5. Apache Spark 2.2.0 中文文档 - Structured Streaming 编程指南 | ApacheCN

    Structured Streaming 编程指南 概述 快速示例 Programming Model (编程模型) 基本概念 处理 Event-time 和延迟数据 容错语义 API 使用 Data ...

  6. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十一)定制一个arvo格式文件发送到kafka的topic,通过Structured Streaming读取kafka的数据

    将arvo格式数据发送到kafka的topic 第一步:定制avro schema: { "type": "record", "name": ...

  7. geotrellis使用(二十五)将Geotrellis移植到spark2.0

    目录 前言 升级spark到2.0 将geotrellis最新版部署到spark2.0(CDH) 总结 一.前言        事情总是变化这么快,前面刚写了一篇博客介绍如何将geotrellis移植 ...

  8. Spark2.0机器学习系列之12: 线性回归及L1、L2正则化区别与稀疏解

    概述 线性回归拟合一个因变量与一个自变量之间的线性关系y=f(x).       Spark中实现了:       (1)普通最小二乘法       (2)岭回归(L2正规化)       (3)La ...

  9. Spark2.0机器学习系列之6:GBDT(梯度提升决策树)、GBDT与随机森林差异、参数调试及Scikit代码分析

    概念梳理 GBDT的别称 GBDT(Gradient Boost Decision Tree),梯度提升决策树.     GBDT这个算法还有一些其他的名字,比如说MART(Multiple Addi ...

随机推荐

  1. mysql 创建merge表方便查询

    SELECT COUNT(*) FROM `comment` SHOW CREATE TABLE `comment` CREATE TABLE `comment1` ( `id` ) NOT NULL ...

  2. Spring.NET依赖注入框架学习-- 泛型对象的创建和使用

    Spring.NET依赖注入框架学习-- 泛型对象的创建和使用 泛型对象的创建方法和普通对象是一样的. 通过构造器创建泛型对象 下面是一个泛型类的代码: namespace GenericsPlay ...

  3. Android 控制闪光灯

    首先闪光灯可以用android.hardware.camera来控制. 1.添加权限 <uses-permission android:name="android.permission ...

  4. Android org.apache.http.*找不到

    https://blog.csdn.net/u012005313/article/details/51499892 直接把 org.apache.http.legacy.jar 报拷贝出来,放到Ecl ...

  5. git上传GitHub并预览

  6. 中国标准时间、‘yyyy-MM-dd’格式时间转为时间戳

    中国标准时间转为时间戳 let _time="Tue Mar 20 2018 00:00:00 GMT+0800 (中国标准时间)"; console.log(Date.parse ...

  7. POJ 2386 Lake Counting(搜索联通块)

    Lake Counting Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 48370 Accepted: 23775 Descr ...

  8. MVC验证

    前言 MVC自己的验证机制,通过一个案例记录学习的成果. 首先,model代码如下: public class Students    {        [Display(Name = "I ...

  9. 对Java中使用两个大括号进行初始化的理解

    最近重读Java 编程思想,读到有关实例化代码块儿 的内容,使我对于使用两个大括号进行初始化有了更深的理解. 实例化代码块儿: 和静态代码块儿的概念相对应,静态代码块儿是static 关键字 + 大括 ...

  10. matlab中画系统零极点的方法

    写论文的时候由于需要画出系统的零极点图.但是之前不知道怎么用matlab画,今天研究了一下,拿出来和大家共享.所用到的matlab函数为zplane,matlab给出的解释如下: ZPLANE Z-p ...