目前,存在着各种计时函数,一般的处理都是先调用计时函数,记下当前时间tstart,然后处理一段程序,再调用计时函数,记下处理后的时间tend,再tend和tstart做差,就可以得到程序的执行时间,但是各种计时函数的精度不一样.下面对各种计时函数,做些简单记录.

  方法1,time()获取当前的系统时间,返回的结果是一个time_t类型,其实就是一个大整数,其值表示从CUT(Coordinated Universal Time)时间1970年1月1日00:00:00(称为UNIX系统的Epoch时间)到当前时刻的秒数.

void test1()
{
time_t start,stop;
start = time(NULL);
foo();//dosomething
stop = time(NULL);
printf("Use Time:%ld\n",(stop-start));
}

  方法2,clock()函数返回从“开启这个程序进程”到“程序中调用clock()函数”时之间的CPU时钟计时单元(clock tick)数,在MSDN中称之为挂钟时间(wal-clock)

常量CLOCKS_PER_SEC,它用来表示一秒钟会有多少个时钟计时单元

void test2()
{
double dur;
clock_t start,end;
start = clock();
foo();//dosomething
end = clock();
dur = (double)(end - start);
printf("Use Time:%f\n",(dur/CLOCKS_PER_SEC));
}

方法3,timeGetTime()函数以毫秒计的系统时间。该时间为从系统开启算起所经过的时间,是windows api

void test3()
{
DWORD t1,t2;
t1 = timeGetTime();
foo();//dosomething
t2 = timeGetTime();
printf("Use Time:%f\n",(t2-t1)*1.0/);
}

方法4,QueryPerformanceCounter()这个函数返回高精确度性能计数器的值,它可以以微妙为单位计时.但是QueryPerformanceCounter()确切的精确计时的最小单位是与系统有关的,所以,必须要查询系统以得到QueryPerformanceCounter()返回的嘀哒声的频率.QueryPerformanceFrequency()提供了这个频率值,返回每秒嘀哒声的个数.

void test4()
{
LARGE_INTEGER t1,t2,tc;
QueryPerformanceFrequency(&tc);
QueryPerformanceCounter(&t1);
foo();//dosomething
QueryPerformanceCounter(&t2);
printf("Use Time:%f\n",(t2.QuadPart - t1.QuadPart)*1.0/tc.QuadPart);
}

方法5,GetTickCount返回(retrieve)从操作系统启动到现在所经过(elapsed)的毫秒数,它的返回值是DWORD

void test5()
{
DWORD t1,t2;
t1 = GetTickCount();
foo();//dosomething
t2 = GetTickCount();
printf("Use Time:%f\n",(t2-t1)*1.0/);
}

方法6,RDTSC指令,在Intel   Pentium以上级别的CPU中,有一个称为“时间戳(Time   Stamp)”的部件,它以64位无符号整型数的格式,记录了自CPU上电以来所经过的时钟周期数。由于目前的CPU主频都非常高,因此这个部件可以达到纳秒级的计时精度。这个精确性是上述几种方法所无法比拟的.在Pentium以上的CPU中,提供了一条机器指令RDTSC(Read   Time   Stamp   Counter)来读取这个时间戳的数字,并将其保存在EDX:EAX寄存器对中。由于EDX:EAX寄存器对恰好是Win32平台下C++语言保存函数返回值的寄存器,所以我们可以把这条指令看成是一个普通的函数调用,因为RDTSC不被C++的内嵌汇编器直接支持,所以我们要用_emit伪指令直接嵌入该指令的机器码形式0X0F、0X31

inline unsigned __int64 GetCycleCount()
{
__asm
{
_emit 0x0F;
_emit 0x31;
}
} void test6()
{
unsigned long t1,t2;
t1 = (unsigned long)GetCycleCount();
foo();//dosomething
t2 = (unsigned long)GetCycleCount();
printf("Use Time:%f\n",(t2 - t1)*1.0/FREQUENCY); //FREQUENCY指CPU的频率
}

  方法7,gettimeofday() linux环境下的计时函数,int gettimeofday ( struct timeval * tv , struct timezone * tz ),gettimeofday()会把目前的时间有tv所指的结构返回,当地时区的信息则放到tz所指的结构中.

//timeval结构定义为:
struct timeval{
long tv_sec; /*秒*/
long tv_usec; /*微秒*/
};
//timezone 结构定义为:
struct timezone{
int tz_minuteswest; /*和Greenwich 时间差了多少分钟*/
int tz_dsttime; /*日光节约时间的状态*/
};
void test7()
{
struct timeval t1,t2;
double timeuse;
gettimeofday(&t1,NULL);
foo();
gettimeofday(&t2,NULL);
timeuse = t2.tv_sec - t1.tv_sec + (t2.tv_usec - t1.tv_usec)/1000000.0;
printf("Use Time:%f\n",timeuse);
}

  方法8,linux环境下,用RDTSC指令计时.与方法6是一样的.只不过在linux实现方式有点差异.

#if defined (__i386__)
static __inline__ unsigned long long GetCycleCount(void)
{
unsigned long long int x;
__asm__ volatile("rdtsc":"=A"(x));
return x;
}
#elif defined (__x86_64__)
static __inline__ unsigned long long GetCycleCount(void)
{
unsigned hi,lo;
__asm__ volatile("rdtsc":"=a"(lo),"=d"(hi));
return ((unsigned long long)lo)|(((unsigned long long)hi)<<);
}
#endif void test8()
{
unsigned long t1,t2;
t1 = (unsigned long)GetCycleCount();
foo();//dosomething
t2 = (unsigned long)GetCycleCount();
printf("Use Time:%f\n",(t2 - t1)*1.0/FREQUENCY); //FREQUENCY CPU的频率
}

简单的比较表格如下

序号 函数 类型 精度级别 时间
1 time C系统调用 <1s
2 clcok C系统调用 <10ms
3 timeGetTime Windows API <1ms
4 QueryPerformanceCounter Windows API <0.1ms
5 GetTickCount Windows API <1ms
6 RDTSC 指令 <0.1ms
7 gettimeofday  linux环境下C系统调用 <0.1ms

  总结,方法1,2,7,8可以在linux环境下执行,方法1,2,3,4,5,6可以在windows环境下执行.其中,timeGetTime()和GetTickCount()的返回值类型为DWORD,当统计的毫妙数过大时,将会使结果归0,影响统计结果.
        测试结果,windows环境下,主频为1.6GHz,单位为秒.

1 Use Time:0
2 Use Time:0.390000
3 Use Time:0.388000
4 Use Time:0.394704
5 Use Time:0.407000
6 Use Time:0.398684

  linux环境下,主频为2.67GHz,单位为秒

1 Use Time:1
2 Use Time:0.290000
7 Use Time:0.288476
8 Use Time:0.297843

由于time()计时函数的精度比较低,多次运行程序时,将会得到不同的结果,时而为0,时而为1

foo()函数如下:

void foo()
{
long i;
for (i=;i<;i++)
{
long a= ;
a = a+;
}
}

【C/C++】计时函数比较的更多相关文章

  1. Windows及Linux平台下的计时函数总结

    本文对Windows及Linux平台下常用的计时函数进行总结,包括精度为秒.毫秒.微秒三种精度的各种函数.比如Window平台下特有的Windows API函数GetTickCount().timeG ...

  2. OpenCV3编程入门笔记(2)计时函数、感兴趣区域RIO、分离/混合通道

    11     绘制直线的line函数 DrawLine(Mat img, Pont start, Point end); 绘制椭圆的ellipse函数 DrawEllipse(Mat img, dou ...

  3. SetTmer函数调用 、取时间函数调用 、计时函数

    SetTmer函数调用 #include <iostream> 取时间函数调用 计时函数

  4. Windows 各种计时函数总结

    本文对Windows平台下常用的计时函数进行总结,包括精度为秒.毫秒.微秒三种精度的 5种方法.分为在标准C/C++下的二种time()及clock(),标准C/C++所以使用的time()及cloc ...

  5. <转>Windows 各种计时函数总结

    本文转自MoreWindows 特此标识感谢 http://blog.csdn.net/morewindows/article/details/6854764 本文对Windows平台下常用的计时函数 ...

  6. js计时函数实现秒表的开始-暂停-清零功能

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. Linux下clock计时函数学习【转】

    转自:https://www.cnblogs.com/wfwenchao/p/5195022.html 平时在Linux和Winows下都有编码的时候,移植代码的时候免不了发现一些问题.1. 你到底准 ...

  8. Linux下clock计时函数学习

    平时在Linux和Winows下都有编码的时候,移植代码的时候免不了发现一些问题.1. 你到底准不准?关于clock()计时函数首先是一段简单的测试代码,功能为测试从文本文件读取数据并赋值给向量最后打 ...

  9. c中计时函数 clock()

    #include<time.h> int main() { // ... .. // .... printf("Time used = %.2lf\n",(double ...

随机推荐

  1. pyenv管理多python版本

    手动安装 cd ~ git clone git://github.com/yyuu/pyenv.git .pyenv echo 'export PYENV_ROOT="$HOME/.pyen ...

  2. Webbench是有名的网站压力测试工具

    [root@666 webbench-1.5]# yum install ctags [root@666 webbench-1.5]#make && make install inst ...

  3. 高性能网络编程3----TCP消息的接收

    高性能网络编程3----TCP消息的接收 http://blog.csdn.net/russell_tao/article/details/9950615 http://blog.csdn.net/c ...

  4. mysql备份的三种方式详解

    一.备份的目的 做灾难恢复:对损坏的数据进行恢复和还原需求改变:因需求改变而需要把数据还原到改变以前测试:测试新功能是否可用 二.备份需要考虑的问题 可以容忍丢失多长时间的数据:恢复数据要在多长时间内 ...

  5. 每日英语:Patent Wars Erupt Again in Tech Sector

    The long-running patent war among the technology industry's heavyweights just grew a whole lot bigge ...

  6. 李洪强和你一起学习前端之(9)规避脱标,CSS可见性,滑动门案例

    1  复习昨天知识 1.1 浮动  特点: >浮动的元素不占位置(脱标) >可以将行内元素转化为行内块元素 >块级元素在一行上显示 >设置了浮动的元素,影响其后面的元素   作 ...

  7. 在Windows上弄一个redis的docker容器

    [本文出自天外归云的博客园] Docker核心概念简介 镜像是一个面向docker引擎的只读模板,包含了文件系统. 镜像是创建容器的基础,容器类似于一个沙箱,用来运行和隔离应用. 容器是从镜像创建的应 ...

  8. 代码重定位和位置无关码——运行于nor flash

    通过前面的学习,我们知道,把可执行程序从一个位置复制到另一个位置的过程叫做重定位. 现在有两种方式,第一种是只重定位data段到内存(sdram),为什么需要重定位?因为有些flash的写操作,不是简 ...

  9. 遍历目录下的所有文件-os.walk

    #coding:utf-8 import os for root,dirs,files in os.walk("D:"): for fileItem in files: print ...

  10. SnowNLP:•中文分词•词性标准•提取文本摘要,•提取文本关键词,•转换成拼音•繁体转简体的 处理中文文本的Python3 类库

    SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和Te ...