题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5794

题意:给你一个n*m的网格,问从(1, 1)走到(n, m)的方案数是多少,其中有r个点是不可到达的;

根据公式我们可以知道每次只能走”日"型;

路径如上图所示,我们可以看到有很多点是不可达的,可达点都是满足(x+y)%3=2的;路径可以看成一个斜着放置的杨辉三角。我们只需要把坐标转换一下即可,这是没有障碍时的方案数;

让(1,1)到(n,m)中如果有一个障碍,那么我们可以用起点到终点的方法数-起点到障碍点的方法数*障碍点到终点的方法数;同样如果有 r 个,那就减去r次这样的情况;

同样处理到达每个点的时候也是这样处理的;

注意有不可达的,所以判断一下不然会re的;

#include<iostream>
#include<algorithm>
#include<string.h>
#include<stdio.h>
#include<math.h>
using namespace std;
#define N 120000
#define PI 4*atan(1.0)
#define mod 110119
#define met(a, b) memset(a, b, sizeof(a))
typedef long long LL; struct node
{
LL x, y;
friend bool operator < (node p, node q)
{
if(p.x!=q.x)
return p.x < q.x;
return p.y < q.y;
}
}a[]; LL f[N] = {}; LL Pow(LL a, LL b)
{
LL ans = ;
while(b)
{
if(b&)
ans = ans*a%mod;
b/=;
a = a*a%mod;
}
return ans%mod;
} LL C(LL n, LL m)
{
if(m>n)return ;
if(m == )return ;
LL ans = f[n] * Pow(f[m], mod-)%mod * Pow(f[n-m], mod-) % mod;
return ans;
}
LL Lucas(LL n, LL m)
{
if(n< || m<)return ;///会出现不可达的情况,所以注意判断,否则会re;
if(m > n) return ;
if(m == ) return ;
return C(n%mod, m%mod) * Lucas(n/mod, m/mod) % mod;
} LL solve(LL x1, LL y1, LL x2, LL y2)
{
if((x1+y1)% != )return ;
if((x2+y2)% != )return ; LL ax = (x1+y1-)/;
LL ay = y1 - - ax; LL bx = (x2+y2-)/;
LL by = y2 - - bx; return Lucas(bx-ax, by-ay);
} int main()
{
for(int i=; i<=; i++)
f[i] = f[i-]*i % mod; LL n, m;
int t = , r;
while(scanf("%I64d %I64d %d", &n, &m, &r)!=EOF)
{
LL ans[N];///起点到i的方案数; for(int i=; i<=r; i++)
scanf("%I64d %I64d", &a[i].x, &a[i].y); sort(a+, a+r+);///按x的升序排列,再按y的升序排列; LL sum = solve(, , n, m); for(int i=; i<=r; i++)
{
ans[i] = solve(, , a[i].x, a[i].y);
for(int j=; j<i; j++)
{
ans[i] = ((ans[i] - ans[j]*solve(a[j].x, a[j].y, a[i].x, a[i].y)%mod) + mod) % mod;
}
}
for(int i=; i<=r; i++)
{
sum = (sum - ans[i]*solve(a[i].x, a[i].y, n, m)%mod + mod) % mod;
}
printf("Case #%d: %I64d\n", t++, sum);
}
return ;
}

A Simple Chess---hdu5794(容斥+Lucas)的更多相关文章

  1. HDU 5794 A Simple Chess (容斥+DP+Lucas)

    A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...

  2. hdu5794 A Simple Chess 容斥+Lucas 从(1,1)开始出发,每一步从(x1,y1)到达(x2,y2)满足(x2−x1)^2+(y2−y1)^2=5, x2>x1,y2>y1; 其实就是走日字。而且是往(n,m)方向走的日字。还有r个障碍物,障碍物不可以到达。求(1,1)到(n,m)的路径条数。

    A Simple Chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  3. hdu-5794 A Simple Chess(容斥+lucas+dp)

    题目链接: A Simple Chess Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Ot ...

  4. HDU5794 A Simple Chess 容斥+lucas

    分析:转自http://blog.csdn.net/mengzhengnan/article/details/47031777 一点感想:其实这个题应该是可以想到的,但是赛场上并不会 dp[i]的定义 ...

  5. Codeforces Round #258 (Div. 2) 容斥+Lucas

    题目链接: http://codeforces.com/problemset/problem/451/E E. Devu and Flowers time limit per test4 second ...

  6. hdu_5794_A Simple Chess(lucas+dp)

    题目链接:hdu_5794_A Simple Chess 题意: 给你n,m,从(1,1)到(n,m),每次只能从左上到右下走日字路线,有k(<=100)的不能走的位置,问你有多少方案 题解: ...

  7. Luogu4640 BJWC2008 王之财宝 容斥、Lucas

    传送门 题意:有$N$种物品,其中$T$个物品有限定数量$B_i$,其他则没有限定.问从中取出不超过$M$个物品的方案数,对质数$P$取模.$N,M \leq 10^9 , T \leq 15 , P ...

  8. HDU 5794 A Simple Chess dp+Lucas

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 A Simple Chess Time Limit: 2000/1000 MS (Java/O ...

  9. 【题解】CF559C C. Gerald and Giant Chess(容斥+格路问题)

    [题解]CF559C C. Gerald and Giant Chess(容斥+格路问题) 55336399 Practice: Winlere 559C - 22 GNU C++11 Accepte ...

随机推荐

  1. Jar命令

    JAR包是Java中所特有一种压缩文档,其实大家就可以把它理解为.zip包;当然也是有区别的,JAR包中有一个META-INF\MANIFEST.MF文件,当你打成JAR包时,它会自动生成. 一.ja ...

  2. 手机CPU天梯图2018年5月最新版

    话不多说,以下是2018年5月最新的手机CPU天梯图精简版,由于最近一两个月,芯片厂商发布的新Soc并不不多,因此这次天梯图更新,主要是来看看今年主流手机厂商都流行使用哪些处理器. 手机CPU天梯图2 ...

  3. thinkjs中修改默认主键

    报错信息: { Error: ER_BAD_FIELD_ERROR: Unknown column 'a_role.id' in 'field list' 还原场景: a_role这张表没有自增的id ...

  4. 使用VS Code写PHP并进行调试

    VS Code(Visual Studio Code)是由微软研发的一款免费.开源的跨平台文本(代码)编辑器. 1.先从官网下载安装好VS Code.官方下载地址是https://code.visua ...

  5. MegaCli 使用

    安装: wget ftp://rpmfind.net/linux/Mandriva/devel/cooker/x86_64/media/non-free/release/megacli-8.02.21 ...

  6. delphixe10 android操作 打电话,摄像头,定位等

    XE6 不支持JStringToString.StringTojString.StrToJURI:use Androidapi.Helpers //Splash Image Delphi XE5,XE ...

  7. java框架---->mybatis的使用(一)

    这里我们记录一些mybatis的一些常用知识和项目中遇到的问题总结.快乐人生的三个必要元素是,有要做的事.热爱的事及盼望的事. mybatis的一些知识 一.mybatis插入返回主键值 插入的jav ...

  8. LeetCode 15 3Sum(3个数求和为0的组合)

    题目链接 https://leetcode.com/problems/3sum/?tab=Description   Problem: 给定整数集合,找到所有满足a+b+c=0的元素组合,要求该组合不 ...

  9. sencha touch 分享到微博扩展

    扩展代码: /* *分享到微博 */ Ext.define('ux.WeiboPicker', { extend: 'Ext.Picker', xtype: 'weiboPicker', config ...

  10. fis前端开发框架

    FIS是专为解决前端开发中自动化工具.性能优化.模块化框架.开发规范.代码部署.开发流程等问题的工具框架,相比gulp和grunt更傻瓜化,上手更容易,最近抽空学习了一下,分享一下心得. FIS官网: ...