daal安装(记得先安装anaconda):

git clone https://github.com/IntelPython/daal4py.git
cd daal4py
conda create -n DAAL4PY -c intel -c intel/label/test -c conda-forge python=3.6 mpich cnc tbb-devel daal daal-include cython jinja2 numpy
source activate DAAL4PY
export CNCROOT=$CONDA_PREFIX
export TBBROOT=$CONDA_PREFIX
export DAALROOT=$CONDA_PREFIX
python setup.py build_ext
python setup.py install
# 运行后面的demo source deactivate DAAL4PY # 退出

注意:安装过程较慢,耐心等待。

随机森林:

#*******************************************************************************
# Copyright 2014-2018 Intel Corporation
# All Rights Reserved.
#
# This software is licensed under the Apache License, Version 2.0 (the
# "License"), the following terms apply:
#
# You may not use this file except in compliance with the License. You may
# obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# See the License for the specific language governing permissions and
# limitations under the License.
#******************************************************************************* # daal4py Decision Forest Classification example for shared memory systems import daal4py as d4p
import numpy as np # let's try to use pandas' fast csv reader
try:
import pandas
read_csv = lambda f, c: pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=np.float32).values
except:
# fall back to numpy loadtxt
read_csv = lambda f, c: np.loadtxt(f, usecols=c, delimiter=',', ndmin=2, dtype=np.float32) def main():
# input data file
infile = "./data/batch/df_classification_train.csv"
testfile = "./data/batch/df_classification_test.csv" # Configure a training object (5 classes)
train_algo = d4p.decision_forest_classification_training(5, nTrees=10, minObservationsInLeafNode=8, featuresPerNode=3, engine = d4p.engines_mt19937(seed=777),
varImportance='MDI', bootstrap=True, resultsToCompute='computeOutOfBagError') # Read data. Let's use 3 features per observation
data = read_csv(infile, range(3))
labels = read_csv(infile, range(3,4))
train_result = train_algo.compute(data, labels)
# Traiing result provides (depending on parameters) model, outOfBagError, outOfBagErrorPerObservation and/or variableImportance # Now let's do some prediction
predict_algo = d4p.decision_forest_classification_prediction(5)
# read test data (with same #features)
pdata = read_csv(testfile, range(3))
plabels = read_csv(testfile, range(3,4))
# now predict using the model from the training above
predict_result = predict_algo.compute(pdata, train_result.model) # Prediction result provides prediction
assert(predict_result.prediction.shape == (pdata.shape[0], 1)) return (train_result, predict_result, plabels) if __name__ == "__main__":
(train_result, predict_result, plabels) = main()
print("\nVariable importance results:\n", train_result.variableImportance)
print("\nOOB error:\n", train_result.outOfBagError)
print("\nDecision forest prediction results (first 10 rows):\n", predict_result.prediction[0:10])
print("\nGround truth (first 10 rows):\n", plabels[0:10])
print('All looks good!')

demo示例数据:

0.00125126,0.563585,8,2,
0.193304,0.808741,12,1,
0.585009,0.479873,6,1,
0.350291,0.895962,13,4,
0.82284,0.746605,11,2,
0.174108,0.858943,12,0,
0.710501,0.513535,10,2,
0.303995,0.0149846,1,2,
0.0914029,0.364452,4,0,
0.147313,0.165899,0,4,
0.988525,0.445692,7,2,
0.119083,0.00466933,0,2,
0.0089114,0.37788,4,2,
0.531663,0.571184,10,3,
0.601764,0.607166,10,4,
0.166234,0.663045,8,4,
0.450789,0.352123,5,3,
0.0570391,0.607685,8,4,
0.783319,0.802606,15,3,
0.519883,0.30195,6,2,
0.875973,0.726676,11,1,
0.955901,0.925718,15,3,
0.539354,0.142338,2,3,
0.462081,0.235328,1,2,
0.862239,0.209601,3,1,
0.779656,0.843654,15,3,
0.996796,0.999695,15,2,
0.611499,0.392438,6,0,
0.266213,0.297281,5,2,
0.840144,0.0237434,3,1,
0.375866,0.0926237,1,0,
0.677206,0.0562151,2,3,
0.00878933,0.91879,12,2,
0.275887,0.272897,5,2,
0.587909,0.691183,10,4,
0.837611,0.726493,11,1,
0.484939,0.205359,1,2,
0.743736,0.468459,6,2,
0.457961,0.949156,13,3,
0.744438,0.10828,2,2,
0.599048,0.385235,6,0,
0.735008,0.608966,10,2,
0.572405,0.361339,6,0,
0.151555,0.225105,0,3,
0.425153,0.802881,13,3,

计算均值 方差等统计特征:

#*******************************************************************************

# Copyright 2014-2018 Intel Corporation

# All Rights Reserved.

#

# This software is licensed under the Apache License, Version 2.0 (the

# "License"), the following terms apply:

#

# You may not use this file except in compliance with the License.  You may

# obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

#

# Unless required by applicable law or agreed to in writing, software

# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT

# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

#

# See the License for the specific language governing permissions and

# limitations under the License.

#*******************************************************************************

# daal4py low order moments example for shared memory systems

import daal4py as d4p

import numpy as np

# let's try to use pandas' fast csv reader

try:

    import pandas

    read_csv = lambda f, c: pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=np.float64).values

except:

    # fall back to numpy loadtxt

    read_csv = lambda f, c: np.loadtxt(f, usecols=c, delimiter=',', ndmin=2)

def main():

    # read data from file

    file = "./data/batch/covcormoments_dense.csv"

    data = read_csv(file, range(10))

    # compute

    alg = d4p.low_order_moments()

    res = alg.compute(data)

    # result provides minimum, maximum, sum, sumSquares, sumSquaresCentered,

    # mean, secondOrderRawMoment, variance, standardDeviation, variation

    assert res.minimum.shape == (1, data.shape[1])

    assert res.maximum.shape == (1, data.shape[1])

    assert res.sum.shape == (1, data.shape[1])

    assert res.sumSquares.shape == (1, data.shape[1])

    assert res.sumSquaresCentered.shape == (1, data.shape[1])

    assert res.mean.shape == (1, data.shape[1])

    assert res.secondOrderRawMoment.shape == (1, data.shape[1])

    assert res.variance.shape == (1, data.shape[1])

    assert res.standardDeviation.shape == (1, data.shape[1])

    assert res.variation.shape == (1, data.shape[1])

    return res

if __name__ == "__main__":

    res = main()

    # print results

    print("\nMinimum:\n", res.minimum)

    print("\nMaximum:\n", res.maximum)

    print("\nSum:\n", res.sum)

    print("\nSum of squares:\n", res.sumSquares)

    print("\nSum of squared difference from the means:\n", res.sumSquaresCentered)

    print("\nMean:\n", res.mean)

    print("\nSecond order raw moment:\n", res.secondOrderRawMoment)

    print("\nVariance:\n", res.variance)

    print("\nStandard deviation:\n", res.standardDeviation)

    print("\nVariation:\n", res.variation)

    print('All looks good!')

Intel daal4py demo运行过程的更多相关文章

  1. 【ASP.NET MVC系列】浅谈ASP.NET MVC运行过程

    ASP.NET MVC系列文章 [01]浅谈Google Chrome浏览器(理论篇) [02]浅谈Google Chrome浏览器(操作篇)(上) [03]浅谈Google Chrome浏览器(操作 ...

  2. Mach-O文件格式和程序从载入到运行过程

    > 之前深入了解过.过去了一年多的时间.如今花些时间好好总结下,毕竟好记性不如烂笔头. 其次另一个目的,对于mach-o文件结构.关于动态载入信息那个数据区中,命令含义没有深刻掰扯清除,希望有同 ...

  3. JavaWeb -- Servlet运行过程 和 细节

    Servlet的运行过程 lServlet程序是由WEB服务器调用,web服务器收到客户端的Servlet访问请求后: ①Web服务器首先检查是否已经装载并创建了该Servlet的实例对象.如果是,则 ...

  4. 自己定义msi安装包的运行过程

    有时候我们须要在程序中运行还有一个程序的安装.这就须要我们去自己定义msi安装包的运行过程. 比方我要做一个安装管理程序,能够依据用户的选择安装不同的子产品.当用户选择了三个产品时,假设分别显示这三个 ...

  5. Libgdx游戏学习(1)——环境配置及demo运行

    原文: Libgdx游戏学习(1)--环境配置及demo运行 - Stars-One的杂货小窝 Libgdx游戏是基于Java的一款游戏引擎,可以发布Android,桌面端,Html,IOS等游戏,出 ...

  6. 江太公:javascript count(a)(b)(c)(d)运行过程思考

    昨天,我弟抛给我一个js的题,使用类似标题那样的调用方法计算a*b*c*d以致无穷的实现方法.思考了半天,终于理清了它的运行过程,记录于下: 函数体: <!DOCTYPE html> &l ...

  7. JAVA - JAVA编译运行过程

    Java编译原理 *.java→*.class→机器码 java编译器 (编译) → 虚拟机(解释执行) →  解释器(翻译) → 机器码 1.Java编译过程与c/c++编译过程不同 Java编译程 ...

  8. 孙鑫MFC学习笔记3:MFC程序运行过程

    1.MFC中WinMain函数的位置在APPMODUL.cpp APPMODUL.cpp中是_tWinMain,其实_tWinMain是一个宏#define _tWinMain WinMain 2.全 ...

  9. HOWTO - Basic MSI安装包在安装运行过程中如何获取完整源路径

    有朋友问到如何在一个Windows Installer安装包中获取安装包源路径,就是在安装包运行过程中动态获取*.msi所在完整路径. 这个问题分两类,如果我们的安装包只是一个*.msi安装文件,那么 ...

随机推荐

  1. Java 实现后缀xls文件读取

    Java 实现后缀xls文件读取 一.开发环境 poi采用的3.9版本 + JDK1.6 + Myeclipse 二,JAR包 三.实现代码 实体类:UserRoleBean package nc.x ...

  2. dom4j解析xml报"文档中根元素后面的标记格式必须正确"

    今天,在写个批量启动报盘机的自动化应用,为了简化起见,将配置信息存储在xml中,格式如下: <?xml version="1.0" encoding="UTF-8& ...

  3. troubleshooting-Container 'PHYSICAL' memory limit

    原因分析 CDH 集群环境没有对 Container分配足够的运行环境(内存) 解决办法 需要修改的配置文件,将具体的配置项修改匹配集群环境资源.如下: 配置文件 配置设置 解释 计算值(参考) ya ...

  4. 20145227鄢曼君《网络对抗》shellcode注入&Return-to-libc攻击深入

    20145227鄢曼君<网络对抗>shellcode注入&Return-to-libc攻击深入 shellcode注入实践 shellcode基础知识 Shellcode实际是一段 ...

  5. Metasploit应用举例

    本篇文章包含以下几方面内容: 1.Metasploit端口扫描: 2.用其他模块 3.metasploit smb获取系统信息 4.Metsploit服务识别 5.ftp识别: 6.metasploi ...

  6. Linxu内核版本号后面多出字符串或者+号【学习笔记】

    作者:庄泽彬 之前一直没有留意到但是最近在编译内核的时候版本号竟然多出了个加号+号或字符串, 后面终于找到原因了,原来config如果设置了CONFIG_LOCALVERSION_AUTO=y,内核的 ...

  7. 安装Qt5.9

    目前,作为一个重量级编程开发工具,Qt 已经正式发布了 5.9.0 版本.相比之前的 5.7,5.8 版本,新版本在性能和功能上有了大幅改善和提高,并由此获得了官方的明确表态:这将是继 5.6 之后的 ...

  8. HDU 6092 Rikka with Subset(dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=6092 题意: 给出两个数组A和B,A数组一共可以有(1<<n)种不同的集合组合,B中则记录了每个数出 ...

  9. spring boot打war包发布

    由于公司一贯的方式都是将war包布在中间件tomcat下运行 所以这次springboot项目需要打war包 how to? 第一步:pom.xml 文件中,打包方式需要修改成war <pack ...

  10. STL_算法_03_拷贝和替换算法

    ◆ 常用的拷贝和替换算法: 1.1.复制(容器A(全部/部分) 复制到 容器B(全部/部分)),返回的值==>iteratorOutBegin.end() iterator copy(itera ...