Intel daal4py demo运行过程
daal安装(记得先安装anaconda):
git clone https://github.com/IntelPython/daal4py.git
cd daal4py
conda create -n DAAL4PY -c intel -c intel/label/test -c conda-forge python=3.6 mpich cnc tbb-devel daal daal-include cython jinja2 numpy
source activate DAAL4PY
export CNCROOT=$CONDA_PREFIX
export TBBROOT=$CONDA_PREFIX
export DAALROOT=$CONDA_PREFIX
python setup.py build_ext
python setup.py install
# 运行后面的demo source deactivate DAAL4PY # 退出
注意:安装过程较慢,耐心等待。
随机森林:
#*******************************************************************************
# Copyright 2014-2018 Intel Corporation
# All Rights Reserved.
#
# This software is licensed under the Apache License, Version 2.0 (the
# "License"), the following terms apply:
#
# You may not use this file except in compliance with the License. You may
# obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# See the License for the specific language governing permissions and
# limitations under the License.
#******************************************************************************* # daal4py Decision Forest Classification example for shared memory systems import daal4py as d4p
import numpy as np # let's try to use pandas' fast csv reader
try:
import pandas
read_csv = lambda f, c: pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=np.float32).values
except:
# fall back to numpy loadtxt
read_csv = lambda f, c: np.loadtxt(f, usecols=c, delimiter=',', ndmin=2, dtype=np.float32) def main():
# input data file
infile = "./data/batch/df_classification_train.csv"
testfile = "./data/batch/df_classification_test.csv" # Configure a training object (5 classes)
train_algo = d4p.decision_forest_classification_training(5, nTrees=10, minObservationsInLeafNode=8, featuresPerNode=3, engine = d4p.engines_mt19937(seed=777),
varImportance='MDI', bootstrap=True, resultsToCompute='computeOutOfBagError') # Read data. Let's use 3 features per observation
data = read_csv(infile, range(3))
labels = read_csv(infile, range(3,4))
train_result = train_algo.compute(data, labels)
# Traiing result provides (depending on parameters) model, outOfBagError, outOfBagErrorPerObservation and/or variableImportance # Now let's do some prediction
predict_algo = d4p.decision_forest_classification_prediction(5)
# read test data (with same #features)
pdata = read_csv(testfile, range(3))
plabels = read_csv(testfile, range(3,4))
# now predict using the model from the training above
predict_result = predict_algo.compute(pdata, train_result.model) # Prediction result provides prediction
assert(predict_result.prediction.shape == (pdata.shape[0], 1)) return (train_result, predict_result, plabels) if __name__ == "__main__":
(train_result, predict_result, plabels) = main()
print("\nVariable importance results:\n", train_result.variableImportance)
print("\nOOB error:\n", train_result.outOfBagError)
print("\nDecision forest prediction results (first 10 rows):\n", predict_result.prediction[0:10])
print("\nGround truth (first 10 rows):\n", plabels[0:10])
print('All looks good!')
demo示例数据:
0.00125126,0.563585,8,2,
0.193304,0.808741,12,1,
0.585009,0.479873,6,1,
0.350291,0.895962,13,4,
0.82284,0.746605,11,2,
0.174108,0.858943,12,0,
0.710501,0.513535,10,2,
0.303995,0.0149846,1,2,
0.0914029,0.364452,4,0,
0.147313,0.165899,0,4,
0.988525,0.445692,7,2,
0.119083,0.00466933,0,2,
0.0089114,0.37788,4,2,
0.531663,0.571184,10,3,
0.601764,0.607166,10,4,
0.166234,0.663045,8,4,
0.450789,0.352123,5,3,
0.0570391,0.607685,8,4,
0.783319,0.802606,15,3,
0.519883,0.30195,6,2,
0.875973,0.726676,11,1,
0.955901,0.925718,15,3,
0.539354,0.142338,2,3,
0.462081,0.235328,1,2,
0.862239,0.209601,3,1,
0.779656,0.843654,15,3,
0.996796,0.999695,15,2,
0.611499,0.392438,6,0,
0.266213,0.297281,5,2,
0.840144,0.0237434,3,1,
0.375866,0.0926237,1,0,
0.677206,0.0562151,2,3,
0.00878933,0.91879,12,2,
0.275887,0.272897,5,2,
0.587909,0.691183,10,4,
0.837611,0.726493,11,1,
0.484939,0.205359,1,2,
0.743736,0.468459,6,2,
0.457961,0.949156,13,3,
0.744438,0.10828,2,2,
0.599048,0.385235,6,0,
0.735008,0.608966,10,2,
0.572405,0.361339,6,0,
0.151555,0.225105,0,3,
0.425153,0.802881,13,3,
计算均值 方差等统计特征:
#******************************************************************************* # Copyright 2014-2018 Intel Corporation # All Rights Reserved. # # This software is licensed under the Apache License, Version 2.0 (the # "License"), the following terms apply: # # You may not use this file except in compliance with the License. You may # obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. #******************************************************************************* # daal4py low order moments example for shared memory systems import daal4py as d4p import numpy as np # let's try to use pandas' fast csv reader try: import pandas read_csv = lambda f, c: pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=np.float64).values except: # fall back to numpy loadtxt read_csv = lambda f, c: np.loadtxt(f, usecols=c, delimiter=',', ndmin=2) def main(): # read data from file file = "./data/batch/covcormoments_dense.csv" data = read_csv(file, range(10)) # compute alg = d4p.low_order_moments() res = alg.compute(data) # result provides minimum, maximum, sum, sumSquares, sumSquaresCentered, # mean, secondOrderRawMoment, variance, standardDeviation, variation assert res.minimum.shape == (1, data.shape[1]) assert res.maximum.shape == (1, data.shape[1]) assert res.sum.shape == (1, data.shape[1]) assert res.sumSquares.shape == (1, data.shape[1]) assert res.sumSquaresCentered.shape == (1, data.shape[1]) assert res.mean.shape == (1, data.shape[1]) assert res.secondOrderRawMoment.shape == (1, data.shape[1]) assert res.variance.shape == (1, data.shape[1]) assert res.standardDeviation.shape == (1, data.shape[1]) assert res.variation.shape == (1, data.shape[1]) return res if __name__ == "__main__": res = main() # print results print("\nMinimum:\n", res.minimum) print("\nMaximum:\n", res.maximum) print("\nSum:\n", res.sum) print("\nSum of squares:\n", res.sumSquares) print("\nSum of squared difference from the means:\n", res.sumSquaresCentered) print("\nMean:\n", res.mean) print("\nSecond order raw moment:\n", res.secondOrderRawMoment) print("\nVariance:\n", res.variance) print("\nStandard deviation:\n", res.standardDeviation) print("\nVariation:\n", res.variation) print('All looks good!')
Intel daal4py demo运行过程的更多相关文章
- 【ASP.NET MVC系列】浅谈ASP.NET MVC运行过程
ASP.NET MVC系列文章 [01]浅谈Google Chrome浏览器(理论篇) [02]浅谈Google Chrome浏览器(操作篇)(上) [03]浅谈Google Chrome浏览器(操作 ...
- Mach-O文件格式和程序从载入到运行过程
> 之前深入了解过.过去了一年多的时间.如今花些时间好好总结下,毕竟好记性不如烂笔头. 其次另一个目的,对于mach-o文件结构.关于动态载入信息那个数据区中,命令含义没有深刻掰扯清除,希望有同 ...
- JavaWeb -- Servlet运行过程 和 细节
Servlet的运行过程 lServlet程序是由WEB服务器调用,web服务器收到客户端的Servlet访问请求后: ①Web服务器首先检查是否已经装载并创建了该Servlet的实例对象.如果是,则 ...
- 自己定义msi安装包的运行过程
有时候我们须要在程序中运行还有一个程序的安装.这就须要我们去自己定义msi安装包的运行过程. 比方我要做一个安装管理程序,能够依据用户的选择安装不同的子产品.当用户选择了三个产品时,假设分别显示这三个 ...
- Libgdx游戏学习(1)——环境配置及demo运行
原文: Libgdx游戏学习(1)--环境配置及demo运行 - Stars-One的杂货小窝 Libgdx游戏是基于Java的一款游戏引擎,可以发布Android,桌面端,Html,IOS等游戏,出 ...
- 江太公:javascript count(a)(b)(c)(d)运行过程思考
昨天,我弟抛给我一个js的题,使用类似标题那样的调用方法计算a*b*c*d以致无穷的实现方法.思考了半天,终于理清了它的运行过程,记录于下: 函数体: <!DOCTYPE html> &l ...
- JAVA - JAVA编译运行过程
Java编译原理 *.java→*.class→机器码 java编译器 (编译) → 虚拟机(解释执行) → 解释器(翻译) → 机器码 1.Java编译过程与c/c++编译过程不同 Java编译程 ...
- 孙鑫MFC学习笔记3:MFC程序运行过程
1.MFC中WinMain函数的位置在APPMODUL.cpp APPMODUL.cpp中是_tWinMain,其实_tWinMain是一个宏#define _tWinMain WinMain 2.全 ...
- HOWTO - Basic MSI安装包在安装运行过程中如何获取完整源路径
有朋友问到如何在一个Windows Installer安装包中获取安装包源路径,就是在安装包运行过程中动态获取*.msi所在完整路径. 这个问题分两类,如果我们的安装包只是一个*.msi安装文件,那么 ...
随机推荐
- P4391 [BOI2009]Radio Transmission 无线传输
P4391 [BOI2009]Radio Transmission 无线传输 kmp 题目让我们求一个串的最小循环子串 我们回想一下kmp中的失配函数 用 f 数组保存当前字符匹配失败后,需要跳到的前 ...
- java反射之-性能优化
在最近的计划中,打算看看在不使用google protobuf的情况下,在原有的采用jackson作为json序列化工具的基础上,是否可以实现进一步的性能优化.主要是针对list的情况. 测试的时候选 ...
- jackson 常用注解,比如忽略某些属性,驼峰和下划线互转
一般情况下使用JSON只使用了java对象与字符串的转换,但是,开发APP时候,我们经常使用实体类来做转换:这样,就需要用到注解: Jackson默认是针对get方法来生成JSON字符串的,可以使用注 ...
- JavaScript 实现 标签页 切换效果
JavaScript 实现 标签页 切换效果 版权声明:未经授权,严禁分享! 构建主体界面 HTML 代码 <h1>实现标签页的切换效果</h1> <ul id=&quo ...
- CEF解决加载慢问题
转载:http://blog.csdn.net/weolar/article/details/51994895 CEF加载慢的时候,加上以下代码,通过命令行的方式: CefRefPtr<CefC ...
- 分页器的js实现代码 bootstrap Paginator.js
参考: http://www.jb51.net/article/76093.htm 如前所述, 不要什么都想到 jquery的 脚本js, 应该首先推荐的是 css 和 元素本身的事件 函数 如: o ...
- Unity3D学习笔记(九):摄像机
3D数学复习 using System.Collections; using System.Collections.Generic; using UnityEngine; public class w ...
- 解决方案:c调用python,PyImport_Import或者PyImport_ImportModule总是返回为空
下面c_python_utils.h是处理工具函数,test.cpp是测试程序,hello.py是python类 可是当我集成到项目中的时候,PyImport_Import总是返回为空,起初我以为是i ...
- Python subprocess模块学习总结--转载
一.subprocess以及常用的封装函数运行python的时候,我们都是在创建并运行一个进程.像Linux进程那样,一个进程可以fork一个子进程,并让这个子进程exec另外一个程序.在Python ...
- a 样式重置 常见用法
样式重置 a:link, a:visited, a:hover, a:active{ color: #fff; text-decoration: none; } 常见用法 ( rel=& ...