FastText 文本分类使用心得
http://blog.csdn.net/thriving_fcl/article/details/53239856
最近在一个项目里使用了fasttext[1], 这是facebook今年开源的一个词向量与文本分类工具,在学术上没有什么创新点,但是好处就是模型简单,训练速度又非常快。我在最近的一个项目里尝试了一下,发现用起来真的很顺手,做出来的结果也可以达到上线使用的标准。
其实fasttext使用的模型与word2vec的模型在结构上是一样的,拿cbow来说,不同的只是在于word2vec cbow的目标是通过当前词的前后N个词来预测当前词,在使用层次softmax的时候,huffman树叶子节点处是训练语料里所有词的向量。
而fasttext在进行文本分类时,huffmax树叶子节点处是每一个类别标签的词向量,在训练的过程中,训练语料的每一个词也会得到对应的词向量,输入为一个window内的词对应的词向量,hidden layer为这几个词的线性相加,相加的结果作为该文档的向量,再通过层次softmax得到预测标签,结合文档的真实标签计算loss,梯度与迭代更新词向量。
fasttext有别于word2vec的另一点是加了ngram切分这个trick,将长词再通过ngram切分为几个短词,这样对于未登录词也可以通过切出来的ngram词向量合并为一个词。由于中文的词大多比较短,这对英文语料的用处会比中文语料更大。
此外,fasttext相比deep learning模型的优点是训练速度极快。我们目前使用fasttext来进行客户填写的订单地址到镇这一级别的分类。每一个省份建立一个模型,每个模型要分的类别都有1000多类,200万左右的训练数据,12个线程1分钟不到就可以训练完成,最终的分类准确率与模型鲁棒性都比较高(区县级别分类正确准确率高于99.5%, 镇级别高于98%),尤其是对缩写地名,或者漏写了市级行政区、区县级行政区的情况也都可以正确处理。
参数方面
loss function选用hs(hierarchical softmax)要比ns(negative sampling) 训练速度要快很多倍,并且准确率也更高。
wordNgrams 默认为1,设置为2以上可以明显提高准确率。
如果词数不是很多,可以把bucket设置的小一点,否则预留会预留太多bucket使模型太大。
因为facebook提供的只是C++版本的代码,原本还以为要自己封装一个python接口,结果上github一搜已经有封装的python接口了[2]。用起来特别方便,觉得还不能满足自己的使用要求,修改源码也非常方便。
对于同样的文本分类问题,后来还用单向LSTM做了一遍,输入pre-trained的embedding词向量,并且在训练的时候fine-tune,与fasttext对比,即使使用了GTX 980的GPU,训练速度还是要慢很多,并且,准确准确率和fasttext是差不多的。
所以对于文本分类,先用fasttext做一个简单的baseline是很适合的。
[1]https://github.com/facebookresearch/fastText
[2]https://github.com/salestock/fastText.py
FastText 文本分类使用心得的更多相关文章
- fastText文本分类算法
1.概述 FastText 文本分类算法是有Facebook AI Research 提出的一种简单的模型.实验表明一般情况下,FastText 算法能获得和深度模型相同的精度,但是计算时间却要远远小 ...
- 文本分类需要CNN?No!fastText完美解决你的需求(前篇)
http://blog.csdn.net/weixin_36604953/article/details/78195462?locationNum=8&fps=1 文本分类需要CNN?No!f ...
- 深度学习之文本分类模型-前馈神经网络(Feed-Forward Neural Networks)
目录 DAN(Deep Average Network) Fasttext fasttext文本分类 fasttext的n-gram模型 Doc2vec DAN(Deep Average Networ ...
- 文本分类需要CNN?No!fastText完美解决你的需求(后篇)
http://blog.csdn.net/weixin_36604953/article/details/78324834 想必通过前一篇的介绍,各位小主已经对word2vec以及CBOW和Skip- ...
- 带监督的文本分类算法FastText
该算法由facebook在2016年开源,典型应用场景是“带监督的文本分类问题”. 模型 模型的优化目标如下: 其中,$<x_n,y_n>$是一条训练样本,$y_n$是训练目标,$ ...
- 文本分类(六):使用fastText对文本进行分类--小插曲
http://blog.csdn.net/lxg0807/article/details/52960072 环境说明:python2.7.linux 自己打自己脸,目前官方的包只能在linux,mac ...
- fastText、TextCNN、TextRNN……这里有一套NLP文本分类深度学习方法库供你选择
https://mp.weixin.qq.com/s/_xILvfEMx3URcB-5C8vfTw 这个库的目的是探索用深度学习进行NLP文本分类的方法. 它具有文本分类的各种基准模型,还支持多标签分 ...
- 文本分类(TFIDF/朴素贝叶斯分类器/TextRNN/TextCNN/TextRCNN/FastText/HAN)
目录 简介 TFIDF 朴素贝叶斯分类器 贝叶斯公式 贝叶斯决策论的理解 极大似然估计 朴素贝叶斯分类器 TextRNN TextCNN TextRCNN FastText HAN Highway N ...
- 无所不能的Embedding 2. FastText词向量&文本分类
Fasttext是FaceBook开源的文本分类和词向量训练库.最初看其他教程看的我十分迷惑,咋的一会ngram是字符一会ngram又变成了单词,最后发现其实是两个模型,一个是文本分类模型[Ref2] ...
随机推荐
- Codeforces Round #258 (Div. 2) A. Game With Sticks 水题
A. Game With Sticks 题目连接: http://codeforces.com/contest/451/problem/A Description After winning gold ...
- CentOS 7设置ulimit不生效的问题解决
sed -i 's/#UseLogin no/UseLogin yes/g' /etc/ssh/sshd_configservice sshd restart 重新登录后查看效果: ulimit -n ...
- ARM Cortex Design Considerations for Debug
JTAG was the traditional mechanism for debug connections for ARM7/9 parts, but with the Cortex-M fam ...
- Why I don’t read books
http://dougmccune.com/blog/2007/03/23/why-i-dont-read-books/ I’ve never read a programming book. I r ...
- lufylegend:图形变形3
面来看看drawtriangles函数的扩展.利用drawtriangles函数来实现一个旋转的3D地球,效果如下 因为lufylegend1.5.0版的drawtriangles函数有个bug,所以 ...
- iPhone系统常用文件夹位置
1. [/Applications] 常用软件的安装目录 2. [/private /var/ mobile/Media /iphone video Recorder] iphone v ...
- mysql 和 sqlite 区别 及 SQLite Expert Professional sqliteManager 区别
mysql 和 sqlite 区别 SQLITE是单机数据库.功能简约,小型化,追求最大磁盘效率MYSQL是完善的服务器数据库.功能全面,综合化,追求最大并发效率 MYSQL.Sybase.Oracl ...
- 商业web漏扫神器——appscan篇
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/dongfei2033/article/details/78472507 很快,已经到了三大商业漏 ...
- Ioc:The basic pattern for integrating Autofac into your application
The basic pattern for integrating Autofac into your application is: Structure your app with inversio ...
- (转载):ASCII,Unicode和UTF-8 编码
UTF-8是Unicode的一种实现方式,也就是它的字节结构有特殊要求,所以我们说一个汉字的范围是0X4E00到0x9FA5,是指unicode值,至于放在utf-8的编码里去就是由三个字节来组织,所 ...