编辑 | MingMing

尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展。最近,我一直在网上寻找关于机器学习和NLP各方面的好资源,为了帮助到和我有相同需求的人,我整理了一份迄今为止我发现的最好的教程内容列表。

通过教程中的简介内容讲述一个概念。避免了包括书籍章节涵盖范围广,以及研究论文在教学理念上做的不好的特点。

我把这篇文章分成四个部分:机器学习、NLP、Python和数学。

每个部分中都包含了一些主题文章,但是由于材料巨大,每个部分不可能包含所有可能的主题,我将每个主题限制在5到6个教程中。(由于微信不能插入外链,请点击“阅读原文”查看原文)

机器学习

  • Machine Learning is Fun! (medium.com/@ageitgey)

  • Machine Learning Crash Course: Part I, Part II, Part III (Machine Learning at Berkeley)

  • An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples (toptal.com)

  • A Gentle Guide to Machine Learning (monkeylearn.com)

  • Which machine learning algorithm should I use? (sas.com)

激活和损失函数

  • Sigmoid neurons (neuralnetworksanddeeplearning.com)

  • What is the role of the activation function in a neural network? (quora.com)

  • Comprehensive list of activation functions in neural networks with pros/cons(stats.stackexchange.com)

  • Activation functions and it’s types-Which is better? (medium.com)

  • Making Sense of Logarithmic Loss (exegetic.biz)

  • Loss Functions (Stanford CS231n)

  • L1 vs. L2 Loss function (rishy.github.io)

  • The cross-entropy cost function (neuralnetworksanddeeplearning.com)

Bias

  • Role of Bias in Neural Networks (stackoverflow.com)

  • Bias Nodes in Neural Networks (makeyourownneuralnetwork.blogspot.com)

  • What is bias in artificial neural network? (quora.com)

感知器

  • Perceptrons (neuralnetworksanddeeplearning.com)

  • The Perception (natureofcode.com)

  • Single-layer Neural Networks (Perceptrons) (dcu.ie)

  • From Perceptrons to Deep Networks (toptal.com)

回归

  • Introduction to linear regression analysis (duke.edu)

  • Linear Regression (ufldl.stanford.edu)

  • Linear Regression (readthedocs.io)

  • Logistic Regression (readthedocs.io)

  • Simple Linear Regression Tutorial for Machine Learning(machinelearningmastery.com)

  • Logistic Regression Tutorial for Machine Learning(machinelearningmastery.com)

  • Softmax Regression (ufldl.stanford.edu)

梯度下降算法

  • Learning with gradient descent (neuralnetworksanddeeplearning.com)

  • Gradient Descent (iamtrask.github.io)

  • How to understand Gradient Descent algorithm (kdnuggets.com)

  • An overview of gradient descent optimization algorithms(sebastianruder.com)

  • Optimization: Stochastic Gradient Descent (Stanford CS231n)

生成式学习

  • Generative Learning Algorithms (Stanford CS229)

  • A practical explanation of a Naive Bayes classifier (monkeylearn.com)

支持向量机

  • An introduction to Support Vector Machines (SVM) (monkeylearn.com)

  • Support Vector Machines (Stanford CS229)

  • Linear classification: Support Vector Machine, Softmax (Stanford 231n)

反向传播

  • Yes you should understand backprop (medium.com/@karpathy)

  • Can you give a visual explanation for the back propagation algorithm for neural - networks? (github.com/rasbt)

  • How the backpropagation algorithm works(neuralnetworksanddeeplearning.com)

  • Backpropagation Through Time and Vanishing Gradients (wildml.com)

  • A Gentle Introduction to Backpropagation Through Time(machinelearningmastery.com)

  • Backpropagation, Intuitions (Stanford CS231n)

深度学习

  • Deep Learning in a Nutshell (nikhilbuduma.com)

  • A Tutorial on Deep Learning (Quoc V. Le)

  • What is Deep Learning? (machinelearningmastery.com)

  • What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep - Learning? (nvidia.com)

优化和降维

  • Seven Techniques for Data Dimensionality Reduction (knime.org)

  • Principal components analysis (Stanford CS229)

  • Dropout: A simple way to improve neural networks (Hinton @ NIPS 2012)

  • How to train your Deep Neural Network (rishy.github.io)

长短期记忆网络

  • A Gentle Introduction to Long Short-Term Memory Networks by the Experts(machinelearningmastery.com)

  • Understanding LSTM Networks (colah.github.io)

  • Exploring LSTMs (echen.me)

  • Anyone Can Learn To Code an LSTM-RNN in Python (iamtrask.github.io)

卷积神经网络

  • Introducing convolutional networks (neuralnetworksanddeeplearning.com)

  • Deep Learning and Convolutional Neural Networks(medium.com/@ageitgey)

  • Conv Nets: A Modular Perspective (colah.github.io)

  • Understanding Convolutions (colah.github.io)

递归神经网络

  • Recurrent Neural Networks Tutorial (wildml.com)

  • Attention and Augmented Recurrent Neural Networks (distill.pub)

  • The Unreasonable Effectiveness of Recurrent Neural Networks(karpathy.github.io)

  • A Deep Dive into Recurrent Neural Nets (nikhilbuduma.com)

强化学习

  • Simple Beginner’s guide to Reinforcement Learning & its implementation(analyticsvidhya.com)

  • A Tutorial for Reinforcement Learning (mst.edu)

  • Learning Reinforcement Learning (wildml.com)

  • Deep Reinforcement Learning: Pong from Pixels (karpathy.github.io)

生成对抗网络

  • What’s a Generative Adversarial Network? (nvidia.com)

  • Abusing Generative Adversarial Networks to Make 8-bit Pixel Art(medium.com/@ageitgey)

  • An introduction to Generative Adversarial Networks (with code in - TensorFlow) (aylien.com)

  • Generative Adversarial Networks for Beginners (oreilly.com)

多任务学习

  • An Overview of Multi-Task Learning in Deep Neural Networks(sebastianruder.com)

自然语言处理

  • A Primer on Neural Network Models for Natural Language Processing (Yoav Goldberg)

  • The Definitive Guide to Natural Language Processing (monkeylearn.com)

  • Introduction to Natural Language Processing (algorithmia.com)

  • Natural Language Processing Tutorial (vikparuchuri.com)

  • Natural Language Processing (almost) from Scratch (arxiv.org)

深入学习和NLP

  • Deep Learning applied to NLP (arxiv.org)

  • Deep Learning for NLP (without Magic) (Richard Socher)

  • Understanding Convolutional Neural Networks for NLP (wildml.com)

  • Deep Learning, NLP, and Representations (colah.github.io)

  • Embed, encode, attend, predict: The new deep learning formula for state-of-the-art NLP models (explosion.ai)

  • Understanding Natural Language with Deep Neural Networks Using Torch(nvidia.com)

  • Deep Learning for NLP with Pytorch (pytorich.org)

词向量

  • Bag of Words Meets Bags of Popcorn (kaggle.com)

  • On word embeddings Part I, Part II, Part III (sebastianruder.com)

  • The amazing power of word vectors (acolyer.org)

  • word2vec Parameter Learning Explained (arxiv.org)

  • Word2Vec Tutorial — The Skip-Gram Model, Negative Sampling(mccormickml.com)

Encoder-Decoder

  • Attention and Memory in Deep Learning and NLP (wildml.com)

  • Sequence to Sequence Models (tensorflow.org)

  • Sequence to Sequence Learning with Neural Networks (NIPS 2014)

  • Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences (medium.com/@ageitgey)

  • How to use an Encoder-Decoder LSTM to Echo Sequences of Random Integers(machinelearningmastery.com)

  • tf-seq2seq (google.github.io)

Python

  • 7 Steps to Mastering Machine Learning With Python (kdnuggets.com)

  • An example machine learning notebook (nbviewer.jupyter.org)

例子

  • How To Implement The Perceptron Algorithm From Scratch In Python(machinelearningmastery.com)

  • Implementing a Neural Network from Scratch in Python (wildml.com)

  • A Neural Network in 11 lines of Python (iamtrask.github.io)

  • Implementing Your Own k-Nearest Neighbour Algorithm Using Python(kdnuggets.com)
    Demonstration of Memory with a Long Short-Term Memory Network in - Python (machinelearningmastery.com)

  • How to Learn to Echo Random Integers with Long Short-Term Memory Recurrent Neural Networks (machinelearningmastery.com)

  • How to Learn to Add Numbers with seq2seq Recurrent Neural Networks(machinelearningmastery.com)

Scipy和numpy

  • Scipy Lecture Notes (scipy-lectures.org)

  • Python Numpy Tutorial (Stanford CS231n)

  • An introduction to Numpy and Scipy (UCSB CHE210D)

  • A Crash Course in Python for Scientists (nbviewer.jupyter.org)

scikit-learn

  • PyCon scikit-learn Tutorial Index (nbviewer.jupyter.org)

  • scikit-learn Classification Algorithms (github.com/mmmayo13)

  • scikit-learn Tutorials (scikit-learn.org)

  • Abridged scikit-learn Tutorials (github.com/mmmayo13)

Tensorflow

  • Tensorflow Tutorials (tensorflow.org)

  • Introduction to TensorFlow — CPU vs GPU (medium.com/@erikhallstrm)

  • TensorFlow: A primer (metaflow.fr)

  • RNNs in Tensorflow (wildml.com)

  • Implementing a CNN for Text Classification in TensorFlow (wildml.com)

  • How to Run Text Summarization with TensorFlow (surmenok.com)

PyTorch

  • PyTorch Tutorials (pytorch.org)

  • A Gentle Intro to PyTorch (gaurav.im)

  • Tutorial: Deep Learning in PyTorch (iamtrask.github.io)

  • PyTorch Examples (github.com/jcjohnson)

  • PyTorch Tutorial (github.com/MorvanZhou)

  • PyTorch Tutorial for Deep Learning Researchers (github.com/yunjey)

数学

  • Math for Machine Learning (ucsc.edu)

  • Math for Machine Learning (UMIACS CMSC422)

线性代数

  • An Intuitive Guide to Linear Algebra (betterexplained.com)

  • A Programmer’s Intuition for Matrix Multiplication (betterexplained.com)

  • Understanding the Cross Product (betterexplained.com)

  • Understanding the Dot Product (betterexplained.com)

  • Linear Algebra for Machine Learning (U. of Buffalo CSE574)

  • Linear algebra cheat sheet for deep learning (medium.com)

  • Linear Algebra Review and Reference (Stanford CS229)

概率

  • Understanding Bayes Theorem With Ratios (betterexplained.com)

  • Review of Probability Theory (Stanford CS229)

  • Probability Theory Review for Machine Learning (Stanford CS229)

  • Probability Theory (U. of Buffalo CSE574)

  • Probability Theory for Machine Learning (U. of Toronto CSC411)

微积分

  • How To Understand Derivatives: The Quotient Rule, Exponents, and Logarithms (betterexplained.com)

  • How To Understand Derivatives: The Product, Power & Chain Rules(betterexplained.com)

  • Vector Calculus: Understanding the Gradient (betterexplained.com)

  • Differential Calculus (Stanford CS224n)

  • Calculus Overview (readthedocs.io)

原文链接https://unsupervisedmethods.com/over-150-of-the-best-machine-learning-nlp-and-python-tutorials-ive-found-ffce2939bd78

机器学习、NLP、Python和Math最好的150余个教程(建议收藏)的更多相关文章

  1. 可能是史上最全的机器学习和Python(包括数学)速查表

    新手学习机器学习很难,就是收集资料也很费劲.所幸Robbie Allen从不同来源收集了目前最全的有关机器学习.Python和相关数学知识的速查表大全.强烈建议收藏! 机器学习有很多方面. 当我开始刷 ...

  2. python中math常用函数

    python中math的使用 import math #先导入math包 1 三角函数 print math.pi #打印pi的值 3.14159265359 print math.radians(1 ...

  3. 分别使用 Python 和 Math.Net 调用优化算法

    1. Rosenbrock 函数 在数学最优化中,Rosenbrock 函数是一个用来测试最优化算法性能的非凸函数,由Howard Harry Rosenbrock 在 1960 年提出 .也称为 R ...

  4. (转)python资料汇总(建议收藏)零基础必看

    摘要:没料到在悟空问答的回答大受欢迎,为方便朋友,重新整理汇总,内容包括长期必备.入门教程.练手项目.学习视频. 一.长期必备. 1. StackOverflow,是疑难解答.bug排除必备网站,任何 ...

  5. Python 100个样例代码【爆肝整理 建议收藏】

    本教程包括 62 个基础样例,12 个核心样例,26 个习惯用法.如果觉得还不错,欢迎转发.留言. 一. Python 基础 62 例 1 十转二 将十进制转换为二进制: >>> b ...

  6. Python导出Excel为Lua/Json/Xml实例教程(三):终极需求

    相关链接: Python导出Excel为Lua/Json/Xml实例教程(一):初识Python Python导出Excel为Lua/Json/Xml实例教程(二):xlrd初体验 Python导出E ...

  7. Python导出Excel为Lua/Json/Xml实例教程(二):xlrd初体验

    Python导出Excel为Lua/Json/Xml实例教程(二):xlrd初体验 相关链接: Python导出Excel为Lua/Json/Xml实例教程(一):初识Python Python导出E ...

  8. Python导出Excel为Lua/Json/Xml实例教程(一):初识Python

    Python导出Excel为Lua/Json/Xml实例教程(一):初识Python 相关链接: Python导出Excel为Lua/Json/Xml实例教程(一):初识Python Python导出 ...

  9. 转载:python + requests实现的接口自动化框架详细教程

    转自https://my.oschina.net/u/3041656/blog/820023 摘要: python + requests实现的接口自动化框架详细教程 前段时间由于公司测试方向的转型,由 ...

随机推荐

  1. hdu 4461 第37届ACM/ICPC杭州赛区I题

    题意:给两个人一些棋子,每个棋子有其对应的power,若b没有或者c没有,或者二者都没有,那么他的total power就会减1,total power最少是1,求最后谁能赢 如果b或c出现的话,fl ...

  2. [Java]Get与Post,客户端跳转与服务器端跳转

    http://www.thinksaas.cn/group/topic/133101/ 虽然说get 与post 问题很老套了,但是作为web 开发人员来说对于这个的理解确实很有必要,其实说到get  ...

  3. JS在在线人数和访问人数

    var date=new Date();var expiresDays=10;var count=1500+parseInt(date.getTime()/1000)-parseInt(date.ge ...

  4. mysql_提示 Lock wait timeout exceeded解决办法

    我的mysql报这个错 err=1205 - Lock wait timeout exceeded; try restarting transaction 利用 SHOW PROCESSLIST来查看 ...

  5. wap2.0开发

    前言 移动通信和互联网的迅速发展,使得互联网从固定向移动转移(即移动互联网)成为一种必然的趋势.由于手机终端本身的限制条件和无线链路的特点,现有无线传送技术的效率和可靠性会越来越难以令用户满意.如何让 ...

  6. Apache Mina Filter

    Mina中的过滤器处于IoService与IoHandler之间,用于过滤每一个I/O事件.本文分析Mina中的过滤器是怎么串起来的? 前面提到了IoFilter,FilterChain等接口和类,在 ...

  7. SQL Server on Linux

    https://edu.aliyun.com/course/51/lesson/list?spm=5176.8764728.aliyun-edu-course-tab.2.4YyLGD&pre ...

  8. Task Parallel Library02,更进一步

    在前一篇中,了解了Task的基本用法 如果一个方法返回Task,Task<T>,如何获取Task的返回值,获取值的过程会阻塞线程吗? static void Main(string[] a ...

  9. redis缓存web session

    redis缓存web session 首先说下架构图.使用Redis作为会话服务器,统一管理Session.如图,集群里的WEB服务器共享存放在REDIS里面全部的客户端SESSION. 当然,反向代 ...

  10. value stored to value2 during its initialization is never read

    警告:value stored to value2 during its initialization is never read NSMutableArray *datesArray = [[NSM ...