北大poj-1091
跳蚤
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 9591 | Accepted: 2892 |
Description
比如当N=2,M=18时,持有卡片(10, 15,
18)的跳蚤,就可以完成任务:他可以先向左跳10个单位长度,然后再连向左跳3次,每次15个单位长度,最后再向右连跳3次,每次18个单位长度。而持
有卡片(12, 15, 18)的跳蚤,则怎么也不可能跳到距他左边一个单位长度的地方。
当确定N和M后,显然一共有M^N张不同的卡片。现在的问题是,在这所有的卡片中,有多少张可以完成任务。
Input
Output
Sample Input
2 4
Sample Output
12
Hint
(1, 1, 4), (1, 2, 4), (1, 3, 4), (1, 4, 4), (2, 1, 4), (2, 3, 4),
(3, 1, 4), (3, 2, 4), (3, 3, 4), (3, 4, 4), (4, 1, 4), (4, 3, 4)
Source
给你两个正整数n,m,让你求长度为n+1的满足条件的一个等式:a[1]*x1+a[2]*x2+a[3]*x3+...+a[n]*xn+a[n+1]*x(n+1)=1 (0<=a[i]<=m&&a[n+1]=m)
让你求一共有多少种情况满足这个条件。
要使得 a[1]*x1+a[2]*x2+a[3]*x3+...+a[n]*xn+a[n+1]*m=1 (0<=a[i]<=m),那么a[1],a[2],a[3]....a[n+1]的最大公约数为1.
要解决此题,你需要知道的知识有扩展欧几里得,鸽巢原理,以及递归求所有的排列组合。
许多博客都举了这么一个例子:
例如:n=2,m=360
360=3^2*2^3*5 所有不满足条件的数列,最大公约数是360质因子的乘积,只要将这些组合去掉,就是要求的答案(不懂的慢慢揣摩)
那么就要先求出m的所有质因子,然后求出总的排列组合的个数,即题目中说的M^N,最后根据鸽巢原理求得最后答案。
公式为:ans=M^N-(有奇数个公因数的n元组)+(有偶数个公因数的n元组)。拿上面的例子来说就是
ans=m^n-( 有公因数2的n元组)- (有公因数3的n元组)- (有公因数5的n元组)+ (有公因数2,3的n元组) +(有公因数2,5的n元组)+ (有公因数3,5的n元组)- (有公因数2,3,5的n元组).
有公因数d的n元组,每个位置上有 (m/d)个选择(1 ~ m里面有m/d个d的倍数),根据乘法原理,可以得出有公因数d的n元组有 (m/d)^n 个.
//容斥原理 + 欧几里得原理
#include<stdio.h> #define M 100000 long long factors[M],reorder[M];
long long n,m,factorNum,per; void factoring()//分解质因子,存在factors里面
{
factorNum=;
long long max=m;
int i = ;
for(i=;i*i<=max;i++)
{
if(max%i==)factors[factorNum++]=i;
while(max%i==)max/=i;
}
if(max!=)factors[factorNum++]=max;
} long long power(long long base, long long index)//求x^y
{
long long k=base;
long long i = ;
for(i=; i<index; i++)
base*=k;
return base;
} void dfs(long long start,long long pos,long long FactorNum4Reorder)
{
long long i = ;
if(pos==FactorNum4Reorder)
{
long long t=m;
for(i=; i<FactorNum4Reorder; i++)
{
t/=reorder[i];//t表示每位上有几个包含质因子的数
}
per+=power(t,n);//总共有多少个
}
else
{
for(i=start; i<factorNum; i++)//递归回溯求解所有排列组合
{
reorder[pos]=factors[i];
dfs(i+,pos+,FactorNum4Reorder);
}
}
} int main()
{
long long i = ;
while(scanf("%I64d%I64d",&n,&m)!=EOF)
{
factoring();
long long ans=power(m,n);
for(i=; i<=factorNum; i++)
{
per=;
dfs(,,i);
if(i%)ans-=per;//如果有奇数个公因数的n元组就相减
else ans+=per;//如果有奇数个公因数的n元组就相加
}
printf("%I64d\n",ans);
}
return ;
}
北大poj-1091的更多相关文章
- 北大POJ题库使用指南
原文地址:北大POJ题库使用指南 北大ACM题分类主流算法: 1.搜索 //回溯 2.DP(动态规划)//记忆化搜索 3.贪心 4.图论 //最短路径.最小生成树.网络流 5.数论 //组合数学(排列 ...
- poj 1091 跳蚤
跳蚤 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8482 Accepted: 2514 Description Z城 ...
- POJ 1091 跳蚤 容斥原理
分析:其实就是看能否有一组解x1,x2, x3, x4....xn+1,使得sum{xi*ai} = 1,也就是只要有任意一个集合{ai1,ai2,ai3, ...aik|gcd(ai1, ai2, ...
- poj 1091 跳骚
/** 题意: 求对于小于m的n个数, 求x1*a1 + x2*a2+x3*a3........+xn*an = 1 即求 a1,a2,a3,....an 的最大公约数为1 , a1,a2....an ...
- POJ 1091
这题确实是好. 其实是求x1*a1+x2*a2+....M*xn+1=1有解的条件.很明显,就是(a1,a2,...M)=1了.然后,可以想象,直接求有多少种,很难,所以,求出选择哪些数一起会不与M互 ...
- 【Java】深深跪了,OJ题目Java与C运行效率对比(附带清华北大OJ内存计算的对比)
看了园友的评论之后,我也好奇清橙OJ是怎么计算内存占用的.重新测试的情况附在原文后边. -------------------------------------- 这是切割线 ----------- ...
- POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)
Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14021 Accepted: 5484 Specia ...
- 各大OJ
北大POJ 杭电HDU 浙大ZOj 蓝桥杯 PAT
- [原]携程预选赛A题-聪明的猴子-GCD+DP
题目: 聪明的猴子 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- leetcode学习笔记--开篇
1 LeetCode是什么? LeetCode是一个在线的编程测试平台,国内也有类似的Online Judge平台.程序开发人员可以通过在线刷题,提高对于算法和数据结构的理解能力,夯实自己的编程基础. ...
随机推荐
- android APK更新
菜鸟的博客请多多指教 最近做了一个新功能,更新APK的功能 1.更新APK是一个耗时的任务,我采用了一个服务来做,上次在网上看到服务是在主线程里面,自己也测试了下,数据是真的 所以下载动作还必须在服务 ...
- Unity3D 之 iTween 相关
有过 Flash 开发经验的朋友,对这个 iTween 应该感到非常熟悉吧,在 Flash 平台有一款功能几乎一样的插件 TweenLite,至于哪个先哪个后,有没有相互借鉴之类的就不在讨论范围了. ...
- LCS
/**LCS问题*/ #include <iostream>#include <string>#include <algorithm> using namespac ...
- VPS/云主机 如何试用远程连接登录主机服务器_
1.windows主机如何远程登录 点本地电脑开始>运行(或者按"window+R")>输入mstsc点确定 弹出远程连接的框输入IP连接, 如果是VPS,直接输入I ...
- 工作需求----表单多选框checkbox交互
关于多选框,反选及选取几个: 1.html内容 <!--begin checkbox--> <div class="c_n_manage_tablexx"> ...
- Linux虚拟机中 Node.js 开发环境搭建
Node.js 开发环境搭建: 1.下载CentOS镜像文件和VMWare虚拟机程序; 2.安装VMWare——>添加虚拟机——>选择CentOS镜像文件即可默认安装带有桌面的Linux虚 ...
- 矩阵k次幂 采用三重循环
#include<iostream> using namespace std; int main() { int n,k; ][],b[][],c[][]; while(cin>&g ...
- Transport Block Size, Throughput and Code rate-----http://www.simpletechpost.com/2012/12/transport-block-size-code-rate-protocol.html
Transport Block Size, Throughput and Code rate Since the size of transport block is not fixed, oft ...
- C——整型提升
一.定义 integral promotion: "A character, a short integer, or an integer bit-field, all either sig ...
- 【流程管理】【PCB】PCB设计流程
添加封装 封装库用官方库,如没有添加补丁库,用原库或其他库中元件复制修改 调用封装时可先放置到PCB里进行测量 3D模型添加网站 封装库分类按厂商分类,常用器件按器件类型分类, 命名使用规范 导入PC ...