目标检测方法——SSD
SSD论文阅读(Wei Liu——【ECCV2016】SSD Single Shot MultiBox Detector)
目录
- 作者及相关链接
- 文章的选择原因
- 方法概括
- 方法细节
- 相关背景补充
- 实验结果
- 与相关文章的对比
- 总结
作者
- intro: ECCV 2016 Oral
- arxiv: http://arxiv.org/abs/1512.02325
- paper: http://www.cs.unc.edu/~wliu/papers/ssd.pdf
- slides: http://www.cs.unc.edu/%7Ewliu/papers/ssd_eccv2016_slide.pdf
- github: https://github.com/weiliu89/caffe/tree/ssd
- video: http://weibo.com/p/2304447a2326da963254c963c97fb05dd3a973
- github(MXNet): https://github.com/zhreshold/mxnet-ssd
- github: https://github.com/zhreshold/mxnet-ssd.cpp
- github(Keras): https://github.com/rykov8/ssd_keras
文章的选择原因
- 性能好,single stage
方法概括
文章的方法介绍
- SSD主要用来解决目标检测的问题(定位+分类),即输入一张待测图像,输出多个box的位置信息和类别信息
- 测试时,输入一张图像到SSD中,网络输出一个下图最右边的tensor(多维矩阵),对该矩阵进行非极大值抑制(NMS)就能得到每个目标的位置和label信息
-
Figure2的最右图的1th-20th Channel表示类别,每一个Channel上的map对应原图,last 4 channel的每一个map分别对应x,y,w,h的偏移量。最后4个通道可以确定一个box的位置信息,前20个通道确定类别信息。
方法的pipeline和关键点
方法细节
模型结构
多尺度特征图
用来预测的卷积滤波器
defaul box
groundTruth的标定,损失函数
default box和尺度的选择
SSD的训练——Hard negative mining
SSD的训练——数据扩增
相关背景补充
Atrous算法(hole算法)
FPS/SPF, Jaccard overlap
二类分类/检测常用的评价标准 (recall, precision, f-measure, accuracy, error, PR曲线和ROC曲线,AP,AUC)
ImageNet多类分类的评价标准
ImageNet单目标检测的评价标准
ImageNet(多)目标检测的评价标准
实验结果
PASCAL VOC2007 test detection结果
使用数据扩增、多尺度default box、atrous算法的对比效果
SSD512在某类Ianimals)上的检测性能可视化
SSD对于目标大小的敏感性实验
SSD使用的feature map的个数对结果的影响
示例结果
时间和速度
与相关文章的对比
原始R-CNN方法的变形
Faster R-CNN和SSD对比
YOLO和SSD对比
总结
文章贡献
- SSD, a single-shot detector for multiple categories (faster than YOLO, accurate as Faster R-CNN)
- The core of SSD is predicting category scores and box offsets for a fixed set of default bounding boxes using small convolutional filters applied to multiple feature maps from different layers
- Experimental evidence: high accuracy, high speed, simple end-to-end training (single shot)
SSD对于其他方法的改进的关键点
- Using a small convolutional filter to predict object categories and offsets in bounding box locations
- Using separate predictors (filters) for different aspect ratio detections
- Using multiple layers for prediction at different scales (apply these filters to multiple feature maps to perform detection at multiple stages)
目标检测方法——SSD的更多相关文章
- 目标检测方法总结(R-CNN系列)
目标检测方法系列--R-CNN, SPP, Fast R-CNN, Faster R-CNN, YOLO, SSD 目录 相关背景 从传统方法到R-CNN 从R-CNN到SPP Fast R-CNN ...
- 目标检测算法SSD在window环境下GPU配置训练自己的数据集
由于最近想试一下牛掰的目标检测算法SSD.于是乎,自己做了几千张数据(实际只有几百张,利用数据扩充算法比如镜像,噪声,切割,旋转等扩充到了几千张,其实还是很不够).于是在网上找了相关的介绍,自己处理数 ...
- CVPR2019目标检测方法进展综述
CVPR2019目标检测方法进展综述 置顶 2019年03月20日 14:14:04 SIGAI_csdn 阅读数 5869更多 分类专栏: 机器学习 人工智能 AI SIGAI 版权声明:本文为 ...
- 目标检测算法SSD之训练自己的数据集
目标检测算法SSD之训练自己的数据集 prerequesties 预备知识/前提条件 下载和配置了最新SSD代码 git clone https://github.com/weiliu89/caffe ...
- 深度学习 目标检测算法 SSD 论文简介
深度学习 目标检测算法 SSD 论文简介 一.论文简介: ECCV-2016 Paper:https://arxiv.org/pdf/1512.02325v5.pdf Slides:http://w ...
- 【目标检测】SSD:
slides 讲得是相当清楚了: http://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf 配合中文翻译来看: https://www.cnb ...
- 目标检测方法——R-FCN
R-FCN论文阅读(R-FCN: Object Detection via Region-based Fully Convolutional Networks ) 目录 作者及相关链接 方法概括 方法 ...
- 目标检测:SSD算法详解
一些概念 True Predict True postive False postive 预测为正类 False negivate True negivate 预测为负类 真实为 ...
- 【目标检测】基于传统算法的目标检测方法总结概述 Viola-Jones | HOG+SVM | DPM | NMS
"目标检测"是当前计算机视觉和机器学习领域的研究热点.从Viola-Jones Detector.DPM等冷兵器时代的智慧到当今RCNN.YOLO等深度学习土壤孕育下的GPU暴力美 ...
随机推荐
- Memcached: List all keys
In the general case, there is no way to list all the keys that a memcached instance is storing. You ...
- About_PHP_验证码的生成
验证码就是一张图片,用到几个关键字: <?php session_start(); $arr = array( 'a','b','c','d','e','f','g','h','i','j',' ...
- phonegap3.5了结
搞了三天的phonegap3.5.最后怎么搞都搞不好了.修改了www中的index.html的内容,clean也不行,在node.js中cordova build也不行. 反正就是apk没有更新啦.至 ...
- php编译内容
./configure --prefix=/usrc/share/php--with-apxs2=/usr/share/apache2/bin/apxs--with-config-file-path= ...
- 3.Powershell编辑器
工欲善其事,必先利其器.有个得心应手的工具会使你的学习事半功倍.使用什么工具来编辑Powershell指令比较方便呢?笔者前后使用过几个编辑器,有几个比较不错推荐给大家试用. Powershell I ...
- 《Linux内核设计与实现》读书笔记 第五章 系统调用
第五章系统调用 系统调用是用户进程与内核进行交互的接口.为了保护系统稳定可靠,避免应用程序恣意忘形. 5.1与内核通信 系统调用在用户空间进程和硬件设备间添加了一个中间层, 作用:为用户空间提供了一种 ...
- Model & ModelMap & ModelAndView 比较ModelFactory简介
Model: 是一个接口,其实现类必继承ModelMap. ModelMap: 继承与LinkedHashMap,相当于自定义了一个map. ModelAndView: 里面封装了两个对象,其中vie ...
- [译] jQuery 3 有哪些新东西
转自:https://github.com/cssmagic/blog/issues/59 jQuery 的横空出世,至今已有十个年头了,而它的长盛不衰显然不是没有理由的.jQuery 提供了极为友好 ...
- python - socket - connection
前面有了TCP server和TCP client.在这个文章中我们建立tcp连接并且进行数据的发送. 例子,经常用到的echo功能.TCP client连接到server, 向server发送mes ...
- PHP调用MYSQL存储过程实例
PHP调用MYSQL存储过程实例 标签: mysql存储phpsqlquerycmd 2010-09-26 11:10 11552人阅读 评论(3) 收藏 举报 实例一:无参的存储过程$conn = ...