给数组赋值:通过fill方法。

对数组排序:通过sort方法,按升序。
比较数组:通过equals方法比较数组中元素值是否相等。
查找数组元素:通过binarySearch方法能对排序好的数组进行二分查找法操作。

使用如下:

        int[] array = new int[5];
//填充数组
Arrays.fill(array, 5);
System.out.println("填充数组:Arrays.fill(array, 5):");
test.output(array); //将数组的第2和第3个元素赋值为8
Arrays.fill(array, 2, 4, 8);
System.out.println("将数组的第2和第3个元素赋值为8:Arrays.fill(array, 2, 4, 8):");
test.output(array); int[] array1 = {7,8,3,2,12,6,3,5,4};
//对数组的第2个到第6个进行排序进行排序
Arrays.sort(array1,2,7);
System.out.println("对数组的第2个到第6个元素进行排序进行排序:Arrays.sort(array,2,7):");
test.output(array1); //对整个数组进行排序
Arrays.sort(array1);
System.out.println("对整个数组进行排序:Arrays.sort(array1):");
test.output(array1); //比较数组元素是否相等
System.out.println("比较数组元素是否相等:Arrays.equals(array, array1):"+"\n"+Arrays.equals(array, array1));
int[] array2 = array1.clone();
System.out.println("克隆后数组元素是否相等:Arrays.equals(array1, array2):"+"\n"+Arrays.equals(array1, array2)); //使用二分搜索算法查找指定元素所在的下标(必须是排序好的,否则结果不正确)
Arrays.sort(array1);
System.out.println("元素3在array1中的位置:Arrays.binarySearch(array1, 3):"+"\n"+Arrays.binarySearch(array1, 3));
//如果不存在就返回负数
System.out.println("元素9在array1中的位置:Arrays.binarySearch(array1, 9):"+"\n"+Arrays.binarySearch(array1, 9)); int aaa[] = {5,4,7,3,8,1};
sort(aaa,0,aaa.length - 1);
for(int i = 0 ;i<aaa.length;i++){
System.out.println(aaa[i]);
}

源码解析:package test;

import java.util.Arrays;

public class test {

    private static final int QUICKSORT_THRESHOLD = 286;

    private static final int MAX_RUN_COUNT = 67;

    private static final int MAX_RUN_LENGTH = 33;

    private static final int INSERTION_SORT_THRESHOLD = 47;

    public static void main(String[] args){
int aaa[] = {5,4,7,3,8,1};
sort(aaa,0,aaa.length - 1);
for(int i = 0 ;i<aaa.length;i++){
System.out.println(aaa[i]);
}
} public static void sort(int[] a, int left, int right) {
// Use Quicksort on small arrays
if (right - left < QUICKSORT_THRESHOLD) {
sort(a, left, right, true);
return;
} /*
* Index run[i] is the start of i-th run
* (ascending or descending sequence).
*/
int[] run = new int[MAX_RUN_COUNT + 1];
int count = 0; run[0] = left; // Check if the array is nearly sorted
for (int k = left; k < right; run[count] = k) {
if (a[k] < a[k + 1]) { // ascending
while (++k <= right && a[k - 1] <= a[k]);
} else if (a[k] > a[k + 1]) { // descending
while (++k <= right && a[k - 1] >= a[k]);
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
}
} else { // equal
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
if (--m == 0) {
sort(a, left, right, true);
return;
}
}
} /*
* The array is not highly structured,
* use Quicksort instead of merge sort.
*/
if (++count == MAX_RUN_COUNT) {
sort(a, left, right, true);
return;
}
} // Check special cases
if (run[count] == right++) { // The last run contains one element
run[++count] = right;
} else if (count == 1) { // The array is already sorted
return;
} /*
* Create temporary array, which is used for merging.
* Implementation note: variable "right" is increased by 1.
*/
int[] b; byte odd = 0;
for (int n = 1; (n <<= 1) < count; odd ^= 1); if (odd == 0) {
b = a; a = new int[b.length];
for (int i = left - 1; ++i < right; a[i] = b[i]);
} else {
b = new int[a.length];
} // Merging
for (int last; count > 1; count = last) {
for (int k = (last = 0) + 2; k <= count; k += 2) {
int hi = run[k], mi = run[k - 1];
for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
if (q >= hi || p < mi && a[p] <= a[q]) {
b[i] = a[p++];
} else {
b[i] = a[q++];
}
}
run[++last] = hi;
}
if ((count & 1) != 0) {
for (int i = right, lo = run[count - 1]; --i >= lo;
b[i] = a[i]
);
run[++last] = right;
}
int[] t = a; a = b; b = t;
}
} /**
* Sorts the specified range of the array by Dual-Pivot Quicksort.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
* @param leftmost indicates if this part is the leftmost in the range
*/
private static void sort(int[] a, int left, int right, boolean leftmost) {
int length = right - left + 1; // 数组后一个值与前一个值进行循环比较,通过j--进行循环替换,例如:初始值为 5 4 7 3 8 1 , 4 5 7 3 8 1 , 4 5 3 7 8 1 , 4 3 5 7 8 1
if (length < INSERTION_SORT_THRESHOLD) {
if (leftmost) {
/*
* Traditional (without sentinel) insertion sort,
* optimized for server VM, is used in case of
* the leftmost part.
*/ 插入排序
  
for (int i = left, j = i; i < right; j = ++i) {
int ai = a[i + 1];
while (ai < a[j]) {
a[j + 1] = a[j];
if (j-- == left) {
break;
}
}
a[j + 1] = ai;
}
} else {
/*
* Skip the longest ascending sequence.
*/
do {
if (left >= right) {
return;
}
} while (a[++left] >= a[left - 1]); /*
* Every element from adjoining part plays the role
* of sentinel, therefore this allows us to avoid the
* left range check on each iteration. Moreover, we use
* the more optimized algorithm, so called pair insertion
* sort, which is faster (in the context of Quicksort)
* than traditional implementation of insertion sort.
*/
for (int k = left; ++left <= right; k = ++left) {
int a1 = a[k], a2 = a[left]; if (a1 < a2) {
a2 = a1; a1 = a[left];
}
while (a1 < a[--k]) {
a[k + 2] = a[k];
}
a[++k + 1] = a1; while (a2 < a[--k]) {
a[k + 1] = a[k];
}
a[k + 1] = a2;
}
int last = a[right]; while (last < a[--right]) {
a[right + 1] = a[right];
}
a[right + 1] = last;
}
return;
} // Inexpensive approximation of length / 7
int seventh = (length >> 3) + (length >> 6) + 1; /*
* Sort five evenly spaced elements around (and including) the
* center element in the range. These elements will be used for
* pivot selection as described below. The choice for spacing
* these elements was empirically determined to work well on
* a wide variety of inputs.
*/
int e3 = (left + right) >>> 1; // The midpoint
int e2 = e3 - seventh;
int e1 = e2 - seventh;
int e4 = e3 + seventh;
int e5 = e4 + seventh; // Sort these elements using insertion sort
if (a[e2] < a[e1]) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; } if (a[e3] < a[e2]) { int t = a[e3]; a[e3] = a[e2]; a[e2] = t;
if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
}
if (a[e4] < a[e3]) { int t = a[e4]; a[e4] = a[e3]; a[e3] = t;
if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
}
}
if (a[e5] < a[e4]) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t;
if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
}
}
} // Pointers
int less = left; // The index of the first element of center part
int great = right; // The index before the first element of right part if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
/*
* Use the second and fourth of the five sorted elements as pivots.
* These values are inexpensive approximations of the first and
* second terciles of the array. Note that pivot1 <= pivot2.
*/
int pivot1 = a[e2];
int pivot2 = a[e4]; /*
* The first and the last elements to be sorted are moved to the
* locations formerly occupied by the pivots. When partitioning
* is complete, the pivots are swapped back into their final
* positions, and excluded from subsequent sorting.
*/
a[e2] = a[left];
a[e4] = a[right]; /*
* Skip elements, which are less or greater than pivot values.
*/
while (a[++less] < pivot1);
while (a[--great] > pivot2); /*
* Partitioning:
*
* left part center part right part
* +--------------------------------------------------------------+
* | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 |
* +--------------------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot1
* pivot1 <= all in [less, k) <= pivot2
* all in (great, right) > pivot2
*
* Pointer k is the first index of ?-part.
*/
outer:
for (int k = less - 1; ++k <= great; ) {
int ak = a[k];
if (ak < pivot1) { // Move a[k] to left part
a[k] = a[less];
/*
* Here and below we use "a[i] = b; i++;" instead
* of "a[i++] = b;" due to performance issue.
*/
a[less] = ak;
++less;
} else if (ak > pivot2) { // Move a[k] to right part
while (a[great] > pivot2) {
if (great-- == k) {
break outer;
}
}
if (a[great] < pivot1) { // a[great] <= pivot2
a[k] = a[less];
a[less] = a[great];
++less;
} else { // pivot1 <= a[great] <= pivot2
a[k] = a[great];
}
/*
* Here and below we use "a[i] = b; i--;" instead
* of "a[i--] = b;" due to performance issue.
*/
a[great] = ak;
--great;
}
} // Swap pivots into their final positions
a[left] = a[less - 1]; a[less - 1] = pivot1;
a[right] = a[great + 1]; a[great + 1] = pivot2; // Sort left and right parts recursively, excluding known pivots
sort(a, left, less - 2, leftmost);
sort(a, great + 2, right, false); /*
* If center part is too large (comprises > 4/7 of the array),
* swap internal pivot values to ends.
*/
if (less < e1 && e5 < great) {
/*
* Skip elements, which are equal to pivot values.
*/
while (a[less] == pivot1) {
++less;
} while (a[great] == pivot2) {
--great;
} /*
* Partitioning:
*
* left part center part right part
* +----------------------------------------------------------+
* | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 |
* +----------------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (*, less) == pivot1
* pivot1 < all in [less, k) < pivot2
* all in (great, *) == pivot2
*
* Pointer k is the first index of ?-part.
*/
outer:
for (int k = less - 1; ++k <= great; ) {
int ak = a[k];
if (ak == pivot1) { // Move a[k] to left part
a[k] = a[less];
a[less] = ak;
++less;
} else if (ak == pivot2) { // Move a[k] to right part
while (a[great] == pivot2) {
if (great-- == k) {
break outer;
}
}
if (a[great] == pivot1) { // a[great] < pivot2
a[k] = a[less];
/*
* Even though a[great] equals to pivot1, the
* assignment a[less] = pivot1 may be incorrect,
* if a[great] and pivot1 are floating-point zeros
* of different signs. Therefore in float and
* double sorting methods we have to use more
* accurate assignment a[less] = a[great].
*/
a[less] = pivot1;
++less;
} else { // pivot1 < a[great] < pivot2
a[k] = a[great];
}
a[great] = ak;
--great;
}
}
} // Sort center part recursively
sort(a, less, great, false); } else { // Partitioning with one pivot
/*
* Use the third of the five sorted elements as pivot.
* This value is inexpensive approximation of the median.
*/
int pivot = a[e3]; /*
* Partitioning degenerates to the traditional 3-way
* (or "Dutch National Flag") schema:
*
* left part center part right part
* +-------------------------------------------------+
* | < pivot | == pivot | ? | > pivot |
* +-------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot
* all in [less, k) == pivot
* all in (great, right) > pivot
*
* Pointer k is the first index of ?-part.
*/
for (int k = less; k <= great; ++k) {
if (a[k] == pivot) {
continue;
}
int ak = a[k];
if (ak < pivot) { // Move a[k] to left part
a[k] = a[less];
a[less] = ak;
++less;
} else { // a[k] > pivot - Move a[k] to right part
while (a[great] > pivot) {
--great;
}
if (a[great] < pivot) { // a[great] <= pivot
a[k] = a[less];
a[less] = a[great];
++less;
} else { // a[great] == pivot
/*
* Even though a[great] equals to pivot, the
* assignment a[k] = pivot may be incorrect,
* if a[great] and pivot are floating-point
* zeros of different signs. Therefore in float
* and double sorting methods we have to use
* more accurate assignment a[k] = a[great].
*/
a[k] = pivot;
}
a[great] = ak;
--great;
}
} /*
* Sort left and right parts recursively.
* All elements from center part are equal
* and, therefore, already sorted.
*/
sort(a, left, less - 1, leftmost);
sort(a, great + 1, right, false);
}
}
}

今日太晚,明日再干~

JAVA源码走读(二)二分查找与Arrays类的更多相关文章

  1. Java源码分析(1):二分查找 + 循环递归实现

    源代码 源码地址 public static int binarySearch(int[] a, int key) { return binarySearch0(a, 0, a.length, key ...

  2. Java源码赏析(三)初识 String 类

    由于String类比较复杂,现在采用多篇幅来讲述 这一期主要从String使用的关键字,实现的接口,属性以及覆盖的方法入手.省略了大部分的字符串操作,比如split().trim().replace( ...

  3. Java源码赏析(六)Class<T> 类

    目的 Class 类是每一个程序员都必须了解的,也是使用反射机制的基础. 这篇文章将Class 类的公共方法大致介绍了一遍(省略了安全.枚举.断言.注解相关代码). 代码 package java.l ...

  4. JAVA源码走读(一) HashMap与ArrayList

    HashMap 一.HashMap基本概念: HashMap是基于哈希表的Map接口的实现.此实现提供所有可选的映射操作,并允许使用null值和null键.此类不保证映射的顺序,特别是它不保证该顺序恒 ...

  5. Java源码赏析(五)再识 String 类

    在 Java源码赏析(三)初识 String 类   中,我们已经大概理解了String的接口,接下来我们描述一下String的常用工具方法. /** * 为了精简的String结构,之前提到的方法省 ...

  6. 解密随机数生成器(二)——从java源码看线性同余算法

    Random Java中的Random类生成的是伪随机数,使用的是48-bit的种子,然后调用一个linear congruential formula线性同余方程(Donald Knuth的编程艺术 ...

  7. 一点一点看JDK源码(二)java.util.List

    一点一点看JDK源码(二)java.util.List liuyuhang原创,未经允许进制转载 本文举例使用的是JDK8的API 目录:一点一点看JDK源码(〇) 1.综述 List译为表,一览表, ...

  8. Spring源码分析——BeanFactory体系之抽象类、类分析(二)

    上一篇分析了BeanFactory体系的2个类,SimpleAliasRegistry和DefaultSingletonBeanRegistry——Spring源码分析——BeanFactory体系之 ...

  9. 框架-springmvc源码分析(二)

    框架-springmvc源码分析(二) 参考: http://www.cnblogs.com/leftthen/p/5207787.html http://www.cnblogs.com/leftth ...

随机推荐

  1. 使用注解配置Spring框架自动代理通知

    话不多说上代码 项目架构图及Lib包如下: 第二步创建业务类接口 package cn.happy.day01.entity; /** * 1.业务接口 * @author Happy * */ pu ...

  2. HDU 5512

    http://acm.hdu.edu.cn/showproblem.php?pid=5512 gcd(a,b)的位置都是可以选的,之后判断一下奇偶 #include <iostream> ...

  3. 基于数据库MySQL的简易学生信息管理系统

    通过这几天学习Mysql数据库,对其也有了基本的了解,为了加深印象,于是就写了一个最简易的学生信息管理系统. 一:基本要求 1.通过已知用户名和密码进行登录: 2.可以显示菜单: 3.可以随时插入学生 ...

  4. Voreen(三) 光线投射参数介绍

    本篇介绍光线投射的第二个个制Pass,光线合成的参数,对应于第一篇总的流程介绍中的Processor SingleVolumeRaycaster.可设置的参数如下: 1,Sampling Rate 采 ...

  5. Mongodb在Linux下安装及配置

    1.下载mongodb的linux版本(注意32位和64位的区别),下载地址:http://www.mongodb.org/downloads 2.将下载的mongodb安装文件mongodb-lin ...

  6. extJS起步

    万事开头难,不过还好有解决办法——参考如下文章 http://blog.csdn.net/leimengyuanlian/article/details/18748599 可以快速搭建好eclipse ...

  7. 事件委托能够优化js性能

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  8. centos 安装beanstalkd

    You need to have the EPEL repo (http://www.servermom.org/2-cents-tip-how-to-enable-epel-repo-on-cent ...

  9. iOS纯代码适配masonry中mas_的问题

    //equalto 和 mas_equalto 是有区别的.但是我们不打算去了解,可以通过添加以下代码来统一. //注意!! 宏定义必须要放在 import 引入头文件之前! //define thi ...

  10. git提交远程仓库命令

    在已有的git库中搭建新库,并且将本地的git仓库,上传到远程服务器的git库中,从而开始一个新的项目 首先,在本地新建文件夹abc,进入到abc里面,然后git init.这样就在本地初始化了一个g ...