4.4 R1 In which of the following problems is Case/Control Sampling LEAST likely to make a positive impact?

A. Predicting a shopper's gender based on the products they buy

B. Finding predictors for a certain type of cancer

C. Predicting if an email is Spam or Not Spam

Correct answer: A

Explanation: Case/Control sampling is most effective when the prior probabilities of the classes are very unequal. We expect this to be the case for the cancer and spam problems, but not the gender problem.

4.5 R1 Suppose that in Ad Clicks (a problem where you try to model if a user will click on a particular ad) it is well known that the majority of the time an ad is shown it will not be clicked. What is another way of saying that?

A. Ad Clicks have a low Prior Probability.

B. Ad Clicks have a high Prior Probability.

C. Ad Clicks have a low Density.

D. Ad Clicks have a high Density.

Correct answer: A

Explanation: Whether or not an ad gets clicked is a Qualitative Variable. Thus, it does not have a density. The Prior Probability of Ad Clicks is low because most ads are not clicked.

4.6 R1 Which of the following is NOT a linear function in x:

A. f(x) = a + b^2x

B. The discriminant function from LDA.

C. \delta_k(x) = x\frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} +\log(\pi_k)

D. \text{logit}(P(y = 1 | x)) where P(y = 1 | x) is as in logistic regression

E. P(y = 1 | x) from logistic regression

Correct answer: E Explanation: P(y = 1 | x) from logistic regression is not linear because it involves both an exponential function of x and a ratio.

5.1 R2 What are reasons why test error could be LESS than training error?

A. By chance, the test set has easier cases than the training set.

B. The model is highly complex, so training error systematically overestimates test error.

C. The model is not very complex, so training error systematically overestimates test error.

Correct answer: A

Explanation: Training error usually UNDERestimates test error when the model is very complex (compared to the training set size), and is a pretty good estimate when the model is not very complex. However, it's always possible we just get too few hard-to-predict points in the test set, or too many in the training set.

---恢复内容结束---

斯坦福公开课:Statistical Learning中做错的选择题的更多相关文章

  1. 斯坦福公开课:Developing IOS 8 App with Swift(1-3)心得体会

    最近开始学习Swift开发移动程序.跟随斯坦福大学的公开课进行自学. 这真是一个美好的时代,虽然不能在斯坦福求学,但是可以观看录制的授课录像.讲义,好似老师在给我们上课一样! 心得: 1.每节课信息量 ...

  2. swift-计算器(斯坦福公开课)

    看了斯坦福老头的课,真心觉得,我的中文怎么也变的这么垃圾了.是关于iOS8的课程,用swift写的,一个计算器应用的制作,看看人家的课,再看看咱们学校的课(不过垃圾学校,纯粹觉得大学浪费了),废话啊, ...

  3. 关于ios8斯坦福公开课第二课

    在这个课程中,我们遇到了这样的代码 @IBAction func oprate(sender: UIButton) { let opration = sender.currentTitle! if u ...

  4. iOS菜鸟成长笔记(3)——斯坦福公开课学习(1)

    一.iOS四层结构 1.Core OS 是用FreeBSD和Mach所改写的Darwin, 是开源.符合POSIX标准的一个Unix核心.这一层包含或者说是提供了整个iPhone OS的一些基础功能, ...

  5. Python练习题中做错题目

    1,一下代码执行的结果为 a = b = "julyedu.com" a = 'AI 教育' print(b) 答案: julyedu.com 要点: 在python中, 不可变对 ...

  6. 一个机器学习博客 ,包括 Standford公开课machine learning

    http://blog.csdn.net/abcjennifer/article/category/1173803/4 http://blog.csdn.net/abcjennifer/article ...

  7. c++中的运算符重载operator1(翁恺c++公开课[30]学习笔记)

    运算符重载规则: 只有已经存在的运算符才能被重载,不能自己制造一个c++中没有的运算符进行重载 重载可以在类或枚举类型内进行,也可以是全局函数,但int.float这种已有的类型内是不被允许的 不能二 ...

  8. static在c\c++中的作用(翁恺c++公开课[28-29]学习笔记)

    static相对来说是一个较复杂的修饰符,c++中的static在c的基础之上又包含了static在类中的应用(也就是说多了static的成员变量和static的成员函数):c\c++中静态变量.对象 ...

  9. c++中的Exceptions异常处理(翁恺c++公开课[36])

    Exceptions用于处理Run-time Error: //文件读取的异常捕获伪代码 try{ open the file; determine its size; allocate that m ...

随机推荐

  1. CentOS 7 安装php开发环境

    安装服务 : yum install httpd httpd-devel  service httpd start 启动     安装mariadb : yum -y install mariadb* ...

  2. [学习笔记]JS中闭包的理解

    一.闭包概念的理解 闭包,又称为词法闭包或函数闭包指引用了自由变量的函数.这个被引用的自由变量将和这个函数一同存在,即使已经离开了创造它的环境也不例外. 自由变量:该变量既不是函数本身定义的也不是函数 ...

  3. 初学c# -- 学习笔记(二)

    接着前面的学习,对话建立了,下面就写对话框气泡,和微信的差不多那种.尖角对话气泡网上一堆,圆尖角的修改了一个.IE8以下不能用,其他都可以用,直接上html代码,将<style>内容用到你 ...

  4. order_by_、group_by_、having的用法区别

    写于 2012-11-20 22:14  doc文档上. Having 这个是用在聚合函数的用法.当我们在用聚合函数的时候,一般都要用到GROUP BY 先进行分组,然后再进行聚合函数的运算.运算完后 ...

  5. Android根据文件路径加载指定文件

    Android根据指定的文件路径加载指定文件格式(图片格式 png, gif,jpg jpeg)的文件相关信息的列表. 如图: 代码: public class Util { /**** * 计算文件 ...

  6. iOS 判断设备型号

    + (NSString*)deviceString { // 需要#import "sys/utsname.h" struct utsname systemInfo; uname( ...

  7. poj 2594 Treasure Exploration (二分匹配)

    Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 6558   Accepted: 2 ...

  8. js获取get方式传递的参数

    String.prototype.GetValue= function(parm) { var reg = new RegExp("(^|&)"+ parm +" ...

  9. Computer Vision 学习 -- 图像存储格式

    本文把自己理解的图像存储格式总结一下. 计算机中的数据,都是二进制的,所以图片也不例外. 这是opencv文档的描述,具体在代码里面,使用矩阵来进行存储. 类似下图是(BGR格式): 图片的最小单位是 ...

  10. poj 2104 K-th Number (划分树入门 或者 主席树入门)

    题意:给n个数,m次询问,每次询问L到R中第k小的数是哪个 算法1:划分树 #include<cstdio> #include<cstring> #include<alg ...