斯坦福公开课:Statistical Learning中做错的选择题
4.4 R1 In which of the following problems is Case/Control Sampling LEAST likely to make a positive impact?
A. Predicting a shopper's gender based on the products they buy
B. Finding predictors for a certain type of cancer
C. Predicting if an email is Spam or Not Spam
Correct answer: A
Explanation: Case/Control sampling is most effective when the prior probabilities of the classes are very unequal. We expect this to be the case for the cancer and spam problems, but not the gender problem.
4.5 R1 Suppose that in Ad Clicks (a problem where you try to model if a user will click on a particular ad) it is well known that the majority of the time an ad is shown it will not be clicked. What is another way of saying that?
A. Ad Clicks have a low Prior Probability.
B. Ad Clicks have a high Prior Probability.
C. Ad Clicks have a low Density.
D. Ad Clicks have a high Density.
Correct answer: A
Explanation: Whether or not an ad gets clicked is a Qualitative Variable. Thus, it does not have a density. The Prior Probability of Ad Clicks is low because most ads are not clicked.
4.6 R1 Which of the following is NOT a linear function in x:
A. f(x) = a + b^2x
B. The discriminant function from LDA.
C. \delta_k(x) = x\frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} +\log(\pi_k)
D. \text{logit}(P(y = 1 | x)) where P(y = 1 | x) is as in logistic regression
E. P(y = 1 | x) from logistic regression
Correct answer: E Explanation: P(y = 1 | x) from logistic regression is not linear because it involves both an exponential function of x and a ratio.
5.1 R2 What are reasons why test error could be LESS than training error?
A. By chance, the test set has easier cases than the training set.
B. The model is highly complex, so training error systematically overestimates test error.
C. The model is not very complex, so training error systematically overestimates test error.
Correct answer: A
Explanation: Training error usually UNDERestimates test error when the model is very complex (compared to the training set size), and is a pretty good estimate when the model is not very complex. However, it's always possible we just get too few hard-to-predict points in the test set, or too many in the training set.
---恢复内容结束---
斯坦福公开课:Statistical Learning中做错的选择题的更多相关文章
- 斯坦福公开课:Developing IOS 8 App with Swift(1-3)心得体会
最近开始学习Swift开发移动程序.跟随斯坦福大学的公开课进行自学. 这真是一个美好的时代,虽然不能在斯坦福求学,但是可以观看录制的授课录像.讲义,好似老师在给我们上课一样! 心得: 1.每节课信息量 ...
- swift-计算器(斯坦福公开课)
看了斯坦福老头的课,真心觉得,我的中文怎么也变的这么垃圾了.是关于iOS8的课程,用swift写的,一个计算器应用的制作,看看人家的课,再看看咱们学校的课(不过垃圾学校,纯粹觉得大学浪费了),废话啊, ...
- 关于ios8斯坦福公开课第二课
在这个课程中,我们遇到了这样的代码 @IBAction func oprate(sender: UIButton) { let opration = sender.currentTitle! if u ...
- iOS菜鸟成长笔记(3)——斯坦福公开课学习(1)
一.iOS四层结构 1.Core OS 是用FreeBSD和Mach所改写的Darwin, 是开源.符合POSIX标准的一个Unix核心.这一层包含或者说是提供了整个iPhone OS的一些基础功能, ...
- Python练习题中做错题目
1,一下代码执行的结果为 a = b = "julyedu.com" a = 'AI 教育' print(b) 答案: julyedu.com 要点: 在python中, 不可变对 ...
- 一个机器学习博客 ,包括 Standford公开课machine learning
http://blog.csdn.net/abcjennifer/article/category/1173803/4 http://blog.csdn.net/abcjennifer/article ...
- c++中的运算符重载operator1(翁恺c++公开课[30]学习笔记)
运算符重载规则: 只有已经存在的运算符才能被重载,不能自己制造一个c++中没有的运算符进行重载 重载可以在类或枚举类型内进行,也可以是全局函数,但int.float这种已有的类型内是不被允许的 不能二 ...
- static在c\c++中的作用(翁恺c++公开课[28-29]学习笔记)
static相对来说是一个较复杂的修饰符,c++中的static在c的基础之上又包含了static在类中的应用(也就是说多了static的成员变量和static的成员函数):c\c++中静态变量.对象 ...
- c++中的Exceptions异常处理(翁恺c++公开课[36])
Exceptions用于处理Run-time Error: //文件读取的异常捕获伪代码 try{ open the file; determine its size; allocate that m ...
随机推荐
- 有关Select option 元素
动态添加option元素以及option元素被选中方法: function getType() { ); shadowCoverTipAdd("加载中,请稍候.."); $.aja ...
- Spark 读取HBase和SolrCloud数据
Spark1.6.2读取SolrCloud 5.5.1 //httpmime-4.4.1.jar // solr-solrj-5.5.1.jar //spark-solr-2.2.2-20161007 ...
- css3、html5学习笔记
2016/12/14 ----认真看完绝对对你有帮助 HTML5针对移动端,移动端的浏览器主要是chrome,是webkit内核; app(applicatin):应用; native app:原生的 ...
- api服务端接口安全
api服务端接口安全性解析 http://blog.csdn.net/tenfyguo/article/details/8225279 常用的基于token的实现方案 http://blog.csdn ...
- python 面向对象-笔记
1.如何创建类 class 类名: pass class bar: pass 2.创建方法 构造方法,__init__(self,arg) obj = 类('a1') 普通方法 obj = 类(‘xx ...
- 自动生成查找组件的lua代码
本篇主要解决的问题是使用lua脚本编写unity业务逻辑时,自动生成一些查找组件及绑定控件事件的lua代码! 现在很多unity项目都是用ulua作为热更新解决方案,因此需要用lua来写相关的逻辑,经 ...
- POJ3694 Network(连通图+LCA)
题目链接:http://poj.org/problem?id=3694 题目大意:给定一个图,每次添加一条边(可能有重边).输出每次添加后桥的 数目.由于添加边的次数比较多,添加一次Tarjin一次明 ...
- Gevent协程
协程 协程,又称微线程,纤程.英文名Coroutine.一句话说明什么是线程:协程是一种用户态的轻量级线程. 协程拥有自己的寄存器上下文和栈.协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来 ...
- Java 项目优化实战
https://blog.coding.net/blog/java-coding-performance 1 Visual VM 2 优化一 2.1 背景 2.2 原实现 2.3 剖析 2.4 方案 ...
- flask-admin章节四:flask session的使用
1. 关于session flask session可能很多人根本都没有使用过,倒是cookie大家可能使用得比较多.flask cookie使用起来比较简单,就两个函数,读取和设置. 具体使用方式如 ...