4.4 R1 In which of the following problems is Case/Control Sampling LEAST likely to make a positive impact?

A. Predicting a shopper's gender based on the products they buy

B. Finding predictors for a certain type of cancer

C. Predicting if an email is Spam or Not Spam

Correct answer: A

Explanation: Case/Control sampling is most effective when the prior probabilities of the classes are very unequal. We expect this to be the case for the cancer and spam problems, but not the gender problem.

4.5 R1 Suppose that in Ad Clicks (a problem where you try to model if a user will click on a particular ad) it is well known that the majority of the time an ad is shown it will not be clicked. What is another way of saying that?

A. Ad Clicks have a low Prior Probability.

B. Ad Clicks have a high Prior Probability.

C. Ad Clicks have a low Density.

D. Ad Clicks have a high Density.

Correct answer: A

Explanation: Whether or not an ad gets clicked is a Qualitative Variable. Thus, it does not have a density. The Prior Probability of Ad Clicks is low because most ads are not clicked.

4.6 R1 Which of the following is NOT a linear function in x:

A. f(x) = a + b^2x

B. The discriminant function from LDA.

C. \delta_k(x) = x\frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} +\log(\pi_k)

D. \text{logit}(P(y = 1 | x)) where P(y = 1 | x) is as in logistic regression

E. P(y = 1 | x) from logistic regression

Correct answer: E Explanation: P(y = 1 | x) from logistic regression is not linear because it involves both an exponential function of x and a ratio.

5.1 R2 What are reasons why test error could be LESS than training error?

A. By chance, the test set has easier cases than the training set.

B. The model is highly complex, so training error systematically overestimates test error.

C. The model is not very complex, so training error systematically overestimates test error.

Correct answer: A

Explanation: Training error usually UNDERestimates test error when the model is very complex (compared to the training set size), and is a pretty good estimate when the model is not very complex. However, it's always possible we just get too few hard-to-predict points in the test set, or too many in the training set.

---恢复内容结束---

斯坦福公开课:Statistical Learning中做错的选择题的更多相关文章

  1. 斯坦福公开课:Developing IOS 8 App with Swift(1-3)心得体会

    最近开始学习Swift开发移动程序.跟随斯坦福大学的公开课进行自学. 这真是一个美好的时代,虽然不能在斯坦福求学,但是可以观看录制的授课录像.讲义,好似老师在给我们上课一样! 心得: 1.每节课信息量 ...

  2. swift-计算器(斯坦福公开课)

    看了斯坦福老头的课,真心觉得,我的中文怎么也变的这么垃圾了.是关于iOS8的课程,用swift写的,一个计算器应用的制作,看看人家的课,再看看咱们学校的课(不过垃圾学校,纯粹觉得大学浪费了),废话啊, ...

  3. 关于ios8斯坦福公开课第二课

    在这个课程中,我们遇到了这样的代码 @IBAction func oprate(sender: UIButton) { let opration = sender.currentTitle! if u ...

  4. iOS菜鸟成长笔记(3)——斯坦福公开课学习(1)

    一.iOS四层结构 1.Core OS 是用FreeBSD和Mach所改写的Darwin, 是开源.符合POSIX标准的一个Unix核心.这一层包含或者说是提供了整个iPhone OS的一些基础功能, ...

  5. Python练习题中做错题目

    1,一下代码执行的结果为 a = b = "julyedu.com" a = 'AI 教育' print(b) 答案: julyedu.com 要点: 在python中, 不可变对 ...

  6. 一个机器学习博客 ,包括 Standford公开课machine learning

    http://blog.csdn.net/abcjennifer/article/category/1173803/4 http://blog.csdn.net/abcjennifer/article ...

  7. c++中的运算符重载operator1(翁恺c++公开课[30]学习笔记)

    运算符重载规则: 只有已经存在的运算符才能被重载,不能自己制造一个c++中没有的运算符进行重载 重载可以在类或枚举类型内进行,也可以是全局函数,但int.float这种已有的类型内是不被允许的 不能二 ...

  8. static在c\c++中的作用(翁恺c++公开课[28-29]学习笔记)

    static相对来说是一个较复杂的修饰符,c++中的static在c的基础之上又包含了static在类中的应用(也就是说多了static的成员变量和static的成员函数):c\c++中静态变量.对象 ...

  9. c++中的Exceptions异常处理(翁恺c++公开课[36])

    Exceptions用于处理Run-time Error: //文件读取的异常捕获伪代码 try{ open the file; determine its size; allocate that m ...

随机推荐

  1. layer弹出层不居中解决方案

    layer弹出层不居中解决方案 代码头中加入以下代码即可 <!doctype html>

  2. FP_PR2SAP 除包材、半成品以外的半成品下层物料展望期7天更改为40日

    --除包材.半成品以外的半成品下层物料展望期7天更改为40日 INSERT INTO OUT_PR (pr_id, ITEM, SUPPLIER_ID, DUE_DATETIME, QTY, PROC ...

  3. centos网卡配置和防火墙停止和启动

    Linux 设置网卡配置ip vi /etc/sysconfig/network-scripts/ifcfg-eth0 DEVICE=eth0 ONBOOT=yes BOOTPROTO=static ...

  4. keepalived衡环境搭建

    环境信息 keepalived master 192.168.1.106 keepalived backup 192.168.1.103 vip 192.168.1.100 1,安装keepalive ...

  5. 转:fatal error: SDL/SDL.h: No such file or directory

    Ubuntu的新得立已经包含SDL库,所以通过几个简单的命令就可以安装,比windows还傻瓜! sudo apt-get install libsdl1.2-dev(比较大,10M左右) 附加包: ...

  6. maven css/js 压缩配置

    <plugin>               <groupId>net.alchim31.maven</groupId>               <art ...

  7. MSSQLSERVER服务无法启动的解决方案

    MSSQLSERVER服务无法启动的解决方案 有时候sqlserver无法启动了,原因是mssqlserver服务没有启动,当你手动启动时,又出现服务无法响应的可恶错误提示... 笔者“有幸”遇到了, ...

  8. linux 如何显示一个文件的某几行(中间几行)

    linux 如何显示一个文件的某几行(中间几行) [一]从第3000行开始,显示1000行.即显示3000~3999行 cat filename | tail -n +3000 | head -n 1 ...

  9. Xamarin Mono 环境搭建(使用Visual Studio 2013 开发android 和 ios )

    本文主要介绍Xamarin结合VS2013来开发Android应用程序,主要会介绍Mono和Xamarin的关系,以及整个搭建环境的过程. 一.Mono和Xamarin介绍 1.Mono简介 Mono ...

  10. 第二章 git 工作区与reset,revert

    1.Git工作区原理图 要清楚理解git reset的三个模式的区别,首先应该搞明白Git的各个工作区的划分. 工作区(working directory):在当前仓库中,新增,更改,删除文件这些动作 ...