Bookshelf 2

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

Farmer John recently bought another bookshelf for the cow library, but the shelf is getting filled up quite quickly, and now the only available space is at the top.

FJ has N cows (1 ≤ N ≤ 20) each with some height of Hi (1 ≤ Hi ≤ 1,000,000 - these are very tall cows). The bookshelf has a height of B (1 ≤ B ≤ S, where S is the sum of the heights of all cows).

To reach the top of the bookshelf, one or more of the cows can stand on top of each other in a stack, so that their total height is the sum of each of their individual heights. This total height must be no less than the height of the bookshelf in order for the cows to reach the top.

Since a taller stack of cows than necessary can be dangerous, your job is to find the set of cows that produces a stack of the smallest height possible such that the stack can reach the bookshelf. Your program should print the minimal 'excess' height between the optimal stack of cows and the bookshelf.

Input

* Line 1: Two space-separated integers: N and B
* Lines 2..N+1: Line i+1 contains a single integer: Hi

Output

* Line 1: A single integer representing the (non-negative) difference between the total height of the optimal set of cows and the height of the shelf.

Sample Input

5 16
3
1
3
5
6

Sample Output

1
 #include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std ;
int dp[] ;
int B , n ;
int a[] ;
int cmp (int x , int y ) {
return x > y ;
}
int main () {
// freopen ("a.txt" , "r" , stdin );
while (scanf ("%d%d" , &n , &B ) != EOF ) {
for (int i = ; i < n ; i++ ) {
scanf ("%d" , &a[i] ) ;
}
sort ( a , a + n , cmp ) ;
for (int i = ; i <= B + ; i++ ) {
dp[i] = ;
}
dp[] = ;
for (int i = ; i < n ; i++ ) {
for (int j = B + ; j >= a[i] ; j-- ) {
if ( dp[j - a[i]] ) {
dp[j] = ;
// printf("%d " , j) ;
}
}
// printf ("\n") ;
}
// printf("\n") ;
for (int j = B ; j <= B + ; j++ ) {
if ( dp[j] ) {
printf ("%d\n" , j - B ) ;
break ;
}
}
}
return ;
}

01背包

Bookshelf 2的更多相关文章

  1. bookshelf

    nodejs mysql ORM 比node-mysql好用多了. bookshelf 支持restful功能,用到的时候研究下:https://www.sitepoint.com/getting-s ...

  2. POJ3628 Bookshelf 2(01背包+dfs)

    Bookshelf 2 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8745   Accepted: 3974 Descr ...

  3. POJ 3628 Bookshelf 2(01背包)

    Bookshelf 2 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9488   Accepted: 4311 Descr ...

  4. POJ3628:Bookshelf 2【01背包】

    Description Farmer John recently bought another bookshelf for the cow library, but the shelf is gett ...

  5. Node的关系型数据库ORM库:bookshelf

    NodeJs 关系数据库ORM库:Bookshelf.js bookshelf.js是基于knex的一个关系型数据库的ORM库.简单易用,内置了Promise的支持.这里主要罗列一些使用的例子,例子就 ...

  6. POJ 3268 Bookshelf 2 动态规划法题解

    Description Farmer John recently bought another bookshelf for the cow library, but the shelf is gett ...

  7. HOJ-2056 Bookshelf(线性动态规划)

    L is a rather sluttish guy. He almost never clean up his surroundings or regulate his personal goods ...

  8. poj_3628 Bookshelf 2

    Description Farmer John recently bought another bookshelf for the cow library, but the shelf is gett ...

  9. 书架 bookshelf

    书架 bookshelf 题目描述 当Farmer John闲下来的时候,他喜欢坐下来读一本好书. 多年来,他已经收集了N本书 (1 <= N <= 100,000). 他想要建立一个多层 ...

随机推荐

  1. 斯坦福机器学习实现与分析之八(kmeans算法)

    Kmeans算法简介 作为无监督学习领域的一种简单的算法,Kmeans在实际应用中却是相当广泛的.其过程是通过不断交替迭代求得最优的类中心以及每个样本所属类别,具体步骤如下: 确定类别个数k 随机初始 ...

  2. mac使用笔记

    1.QQ多开 MAC中登录QQ后按CMD+N组合按键即可新打开一个QQ登录窗口 2.关闭左右摇晃鼠标放大 系统偏好设置>辅助功能>显示器,去掉“摇动鼠标以定位”前面的勾即可 3.使用ctr ...

  3. Orchard 刨析:导航篇

    之前承诺过针对Orchard Framework写一个系列.本应该在昨天写下这篇导航篇,不过昨天比较累偷懒的去玩了两盘单机游戏哈哈.下面进入正题. 写在前面 面向读者 之前和本文一再以Orchard ...

  4. 网页爬虫--scrapy进阶

    本篇将谈一些scrapy的进阶内容,帮助大家能更熟悉这个框架. 1. 站点选取 现在的大网站基本除了pc端都会有移动端,所以需要先确定爬哪个. 比如爬新浪微博,有以下几个选择: www.weibo.c ...

  5. sql脚本比较大,sqlserver 无法导入,就用cmd命令执行

    osql简单用法:用来将本地脚本执行,适合sql脚本比较大点的情况,执行起来比较方便 1 osql -S serverIP -U sa -P 123 -i C:\script.sql serverIP ...

  6. XMLHttpRequest的POST中文表单问题解决方案

    XMLHttpRequest的POST中文表单问题解决方案 由于XMLHttpRequest POST的内容是用UTF-8编码,所以在服务端要先把request的编码改为UTF-8. 而且客户端pos ...

  7. Kettle_设置全局变量

    使用全局变量的目的是为了避免反复修改[作业]和[转换]中变量到实际值 步骤: 1.打开全局配置文件 目录:C:\Users\Administrator\.kettle\kettle.propertie ...

  8. hdu1535 SPFA

    2边SPFA 然后求和 #include<stdio.h> #include<string.h> #include<queue> #define INF 10000 ...

  9. POJ-1273 Drainage Ditches 最大流Dinic

    Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 65146 Accepted: 25112 De ...

  10. spring获取ApplicationContext对象的方法——ApplicationContextAware

    一. 引言 工作之余,在看一下当年学的spring时,感觉我们以前都是通过get~ set~方法去取spring的Ioc取bean,今天就想能不能换种模型呢?因为我们在整合s2sh时,也许有那么一天就 ...