TensorFlow 的 How-Tos,讲解了这么几点:

1. 变量:创建,初始化,保存,加载,共享;

2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Visualization)

3. 数据的读取;

4. 线程和队列;

5. 分布式的TensorFlow;

6. 增加新的Ops;

7. 自定义数据读取;

由于各种原因,本人只看了前5个部分,剩下的2个部分还没来得及看,时间紧任务重,所以匆匆发车了,以后如果有用到的地方,再回过头来研究。学习过程中深感官方文档的繁杂冗余极多多,特别是第三部分数据读取,又臭又长,花了我好久时间,所以我想把第三部分整理如下,方便乘客们。

TensorFlow 有三种方法读取数据:1)供给数据,用placeholder;2)从文件读取;3)用常量或者是变量来预加载数据,适用于数据规模比较小的情况。供给数据没什么好说的,前面已经见过了,不难理解,我们就简单的说一下从文件读取数据。

官方的文档里,从文件读取数据是一段很长的描述,链接层出不穷,看完这个链接还没看几个字,就出现了下一个链接。

自己花了很久才认识路,所以想把这部分总结一下,带带我的乘客们。

首先要知道你要读取的文件的格式,选择对应的文件读取器;

然后,定位到数据文件夹下,用

["file0", "file1"]        # or
[("file%d" % i) for i in range(2)]) # or
tf.train.match_filenames_once

选择要读取的文件的名字,用 tf.train.string_input_producer 函数来生成文件名队列,这个函数可以设置shuffle = Ture,来打乱队列,可以设置epoch = 5,过5遍训练数据。

最后,选择的文件读取器,读取文件名队列并解码,输入 tf.train.shuffle_batch 函数中,生成 batch 队列,传递给下一层。

1)假如你要读取的文件是像 CSV 那样的文本文件,用的文件读取器和解码器就是 TextLineReaderdecode_csv

2)假如你要读取的数据是像 cifar10 那样的 .bin 格式的二进制文件,就用 tf.FixedLengthRecordReadertf.decode_raw 读取固定长度的文件读取器和解码器。如下列出了我的参考代码,后面会有详细的解释,这边先大致了解一下:

class cifar10_data(object):
def __init__(self, filename_queue):
self.height = 32
self.width = 32
self.depth = 3
self.label_bytes = 1
self.image_bytes = self.height * self.width * self.depth
self.record_bytes = self.label_bytes + self.image_bytes
self.label, self.image = self.read_cifar10(filename_queue) def read_cifar10(self, filename_queue):
reader = tf.FixedLengthRecordReader(record_bytes = self.record_bytes)
key, value = reader.read(filename_queue)
record_bytes = tf.decode_raw(value, tf.uint8)
label = tf.cast(tf.slice(record_bytes, [0], [self.label_bytes]), tf.int32)
image_raw = tf.slice(record_bytes, [self.label_bytes], [self.image_bytes])
image_raw = tf.reshape(image_raw, [self.depth, self.height, self.width])
image = tf.transpose(image_raw, (1,2,0))
image = tf.cast(image, tf.float32)
return label, image def inputs(data_dir, batch_size, train = True, name = 'input'): with tf.name_scope(name):
if train:
filenames = [os.path.join(data_dir,'data_batch_%d.bin' % ii)
for ii in range(1,6)]
for f in filenames:
if not tf.gfile.Exists(f):
raise ValueError('Failed to find file: ' + f) filename_queue = tf.train.string_input_producer(filenames)
read_input = cifar10_data(filename_queue)
images = read_input.image
images = tf.image.per_image_whitening(images)
labels = read_input.label
num_preprocess_threads = 16
image, label = tf.train.shuffle_batch(
[images,labels], batch_size = batch_size,
num_threads = num_preprocess_threads,
min_after_dequeue = 20000, capacity = 20192) return image, tf.reshape(label, [batch_size]) else:
filenames = [os.path.join(data_dir,'test_batch.bin')]
for f in filenames:
if not tf.gfile.Exists(f):
raise ValueError('Failed to find file: ' + f) filename_queue = tf.train.string_input_producer(filenames)
read_input = cifar10_data(filename_queue)
images = read_input.image
images = tf.image.per_image_whitening(images)
labels = read_input.label
num_preprocess_threads = 16
image, label = tf.train.shuffle_batch(
[images,labels], batch_size = batch_size,
num_threads = num_preprocess_threads,
min_after_dequeue = 20000, capacity = 20192) return image, tf.reshape(label, [batch_size])

3)如果你要读取的数据是图片,或者是其他类型的格式,那么可以先把数据转换成 TensorFlow 的标准支持格式 tfrecords ,它其实是一种二进制文件,通过修改 tf.train.Example 的Features,将 protocol buffer 序列化为一个字符串,再通过 tf.python_io.TFRecordWriter 将序列化的字符串写入 tfrecords,然后再用跟上面一样的方式读取tfrecords,只是读取器变成了tf.TFRecordReader,之后通过一个解析器tf.parse_single_example ,然后用解码器 tf.decode_raw 解码。

例如,对于生成式对抗网络GAN,我采用了这个形式进行输入,部分代码如下,后面会有详细解释,这边先大致了解一下:

def _int64_feature(value):
return tf.train.Feature(int64_list = tf.train.Int64List(value = [value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list = tf.train.BytesList(value = [value])) def convert_to(data_path, name): """
Converts s dataset to tfrecords
""" rows = 64
cols = 64
depth = DEPTH
for ii in range(12):
writer = tf.python_io.TFRecordWriter(name + str(ii) + '.tfrecords')
for img_name in os.listdir(data_path)[ii*16384 : (ii+1)*16384]:
img_path = data_path + img_name
img = Image.open(img_path)
h, w = img.size[:2]
j, k = (h - OUTPUT_SIZE) / 2, (w - OUTPUT_SIZE) / 2
box = (j, k, j + OUTPUT_SIZE, k+ OUTPUT_SIZE) img = img.crop(box = box)
img = img.resize((rows,cols))
img_raw = img.tobytes()
example = tf.train.Example(features = tf.train.Features(feature = {
'height': _int64_feature(rows),
'weight': _int64_feature(cols),
'depth': _int64_feature(depth),
'image_raw': _bytes_feature(img_raw)}))
writer.write(example.SerializeToString())
writer.close() def read_and_decode(filename_queue): """
read and decode tfrecords
""" # filename_queue = tf.train.string_input_producer([filename_queue])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue) features = tf.parse_single_example(serialized_example,features = {
'image_raw':tf.FixedLenFeature([], tf.string)})
image = tf.decode_raw(features['image_raw'], tf.uint8) return image

这里,我的data_path下面有16384*12张图,通过12次写入Example操作,把图片数据转化成了12个tfrecords,每个tfrecords里面有16384张图。

4)如果想定义自己的读取数据操作,请参考https://www.tensorflow.org/how_tos/new_data_formats/

好了,今天的车到站了,请带好随身物品准备下车,明天老司机还有一趟车,请记得准时乘坐,车不等人。

参考文献:

1. https://www.tensorflow.org/how_tos/

2. 没了

 

TF Boys (TensorFlow Boys ) 养成记(二)的更多相关文章

  1. TF Boys (TensorFlow Boys ) 养成记(二): TensorFlow 数据读取

    TensorFlow 的 How-Tos,讲解了这么几点: 1. 变量:创建,初始化,保存,加载,共享: 2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Vis ...

  2. TF Boys (TensorFlow Boys ) 养成记(一)

    本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装.关于 ...

  3. TF Boys (TensorFlow Boys ) 养成记(一):TensorFlow 基本操作

    本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装.关于 ...

  4. TF Boys (TensorFlow Boys ) 养成记(五)

    有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输 ...

  5. TF Boys (TensorFlow Boys ) 养成记(四)

    前面基本上把 TensorFlow 的在图像处理上的基础知识介绍完了,下面我们就用 TensorFlow 来搭建一个分类 cifar10 的神经网络. 首先准备数据: cifar10 的数据集共有 6 ...

  6. TF Boys (TensorFlow Boys ) 养成记(五): CIFAR10 Model 和 TensorFlow 的四种交叉熵介绍

    有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输 ...

  7. TF Boys (TensorFlow Boys ) 养成记(四):TensorFlow 简易 CIFAR10 分类网络

    前面基本上把 TensorFlow 的在图像处理上的基础知识介绍完了,下面我们就用 TensorFlow 来搭建一个分类 cifar10 的神经网络. 首先准备数据: cifar10 的数据集共有 6 ...

  8. TF Boys (TensorFlow Boys ) 养成记(六)

    圣诞节玩的有点嗨,差点忘记更新.祝大家昨天圣诞节快乐,再过几天元旦节快乐. 来继续学习,在/home/your_name/TensorFlow/cifar10/ 下新建文件夹cifar10_train ...

  9. TF Boys (TensorFlow Boys ) 养成记(三)

    上次说到了 TensorFlow 从文件读取数据,这次我们来谈一谈变量共享的问题. 为什么要共享变量?我举个简单的例子:例如,当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生 ...

随机推荐

  1. P2001xor-sigma 字典树,然而好坑

    https://vijos.org/p/2001 设perXor[i]表示1---i的前缀异或值. 那么要得到某一段的异或值,只需要perXor[j] ^ perXor[i - 1] 那么我们把per ...

  2. html+css-----补

    其实html没什么好补充的了,主要是使用css如何构造出各种想要的效果 1.加减框 <!DOCTYPE html> <html lang="en"> < ...

  3. Linux档案与目彔的基本操作(查看与权限)

    此文包含的命令: cd.pwd.mkdir.rmdir.rm.ls.cp.mv.cat.tac.more.less.head.tail.od.touch.umask.chattr.lsattr.fil ...

  4. gcc编译时指定链接库的查找目录

    gcc编译时,如果需要链接的库的目录不在标准目录,则需要通过将保护库的目录/aa/bb/cc通过-L/aa/bb/cc 添加到搜索路径中,如: gcc -o xmltest xml_test.cpp ...

  5. Java学习笔记16--异常

    异常 异常是导致程序中断运行的一种指令流,如果不对异常进行正确的处理,则可能导致程序的中断执行,造成不必要的损失, 所以在程序的设计中必须要考虑各种异常的发生,并正确的做好相应的处理,这样才能保证程序 ...

  6. SUSE Linux Enterprise Server 11 软件源

    1.添加软件源 zypper ar http://ftp5.gwdg.de/pub/opensuse/discontinued/distribution/11.4/repo/oss oss zyppe ...

  7. 用sql从一张表更新数据到另外一张表(多表数据迁移)

    update TBL_1 A, TBL_2 B, TBL_3 Cset a.email=c.email_addrwhere a.user_id=b.user_id and b.un_id=c.un_i ...

  8. ASP.NET访问网络映射盘&实现文件上传读取功能

    最近在改Web的时候,遇到一个问题,要跨机器访问共享文件夹,以实现文件正常上传下载功能. 要实现该功能,可以采用HTTP的方式,也可以使用网络映射磁盘的方式,今天主要给大家分享一下使用网络映射磁盘的方 ...

  9. iOS开发:深入理解GCD 第二篇(dispatch_group、dispatch_barrier、基于线程安全的多读单写)

    Dispatch Group在追加到Dispatch Queue中的多个任务处理完毕之后想执行结束处理,这种需求会经常出现.如果只是使用一个Serial Dispatch Queue(串行队列)时,只 ...

  10. java中两个值互换

    两个值互换有以下三种方式: 使用临时变量(此种方法便于理解) x = 10; y = 20; //begin int temp = x; x = y; y = temp; //end; //此时x = ...