用程序来求积分的方法有很多,这篇文章主要是有关牛顿-科特斯公式。

  学过插值算法的同学最容易想到的就是用插值函数代替被积分函数来求积分,但实际上在大部分场景下这是行不通的。

  插值函数一般是一个不超过n次的多项式,如果用插值函数来求积分的话,就会引进高次多项式求积分的问题。这样会将原来的求积分问题带到另一个求积分问题:如何求n次多项式的积分,而且当次数变高时,会出现龙悲歌现象,误差反而可能会增大,并且高次的插值求积公式有可能会变得不稳定:详细原因不赘述。

  牛顿-科特斯公式解决这一问题的办法是将大的插值区间分为一堆小的插值区间,使得多项式的次数不会太高。然后通过引入参数函数

将带有幂的项的取值范围固定在一个固定范围内,这样一来就将多项式带有幂的部分的求积变为一个固定的常数,只需手工算出来即可。这个常数可以直接带入多项式求积函数。

  上式中x的求积分区间为[a, b],h = (b - a)/n, 这样一来积分区间变为[0, n],需要注意的是从这个公式可以看出一个大的区间被分为n个等长的小区间。 这一部分具体请参见任意一本有关数值计算的书!

   n是一个事先确定好的值。

  又因为一个大的插值区间需要被分为等长的多个小区间,并在这些小区间上分别进行插值和积分,因此此时的牛顿-科特斯公式被称为:复化牛顿-科特斯公式。

   并且对于n的不同取值牛顿-科特斯有不同的名称: 当n=1时,叫做复化梯形公式,复化梯形公式也就是将每一个小区间都看为一个梯形(高为h,上底为f(t), 下底为f(t+1))。这与积分的本质:无限分隔  相同。

  当n=2时,复化牛顿-科特斯公式被称为复化辛普森公式(非美国法律界著名的那个辛普森)。

  我这篇文章实现的是复化梯形公式:

    

  首先写一个函数求节点函数值求和那部分:

    

"""
@brief: 求和 ∑f(xk) : xk表示等距节点的第k个节点,不包括端点
xk = a + kh (k = 0, 1, 2, ...)
积分区间为[a, b] @param: xk 积分区间的等分点x坐标集合(不包括端点)
@param: func 求积函数
@return: 返回值为集合的和
"""
def sum_fun_xk(xk, func):
return sum([func(each) for each in xk])

  

  然后就可以写整个求积分函数了:

"""
@brief: 求func积分 : @param: a 积分区间左端点
@param: b 积分区间右端点
@param: n 积分分为n等份(复化梯形求积分要求)
@param: func 求积函数
@return: 积分值
"""
def integral(a, b, n, func):
h = (b - a)/float(n)
xk = [a + i*h for i in range(1, n)]
return h/2 * (func(a) + 2 * sum_fun_xk(xk, func) + func(b))

  相当的简单

  

  试验:

  当把大区间分为两个小区间时:

    

  分为20个小区间时:

  

  求的积分值就是这些彩色的梯形面积之和。

  测试代码:

if __name__ == "__main__":

    func = lambda x: x**2
a, b = 2, 8
n = 20
print integral(a, b, n, func) ''' 画图 '''
import matplotlib.pyplot as plt
plt.figure("play")
ax1 = plt.subplot(111)
plt.sca(ax1) tmpx = [2 + float(8-2) /50 * each for each in range(50+1)]
plt.plot(tmpx, [func(each) for each in tmpx], linestyle = '-', color='black') for rang in range(n):
tmpx = [a + float(8-2)/n * rang, a + float(8-2)/n * rang, a + float(8-2)/n * (rang+1), a + float(8-2)/n * (rang+1)]
tmpy = [0, func(tmpx[1]), func(tmpx[2]), 0]
c = ['r', 'y', 'b', 'g']
plt.fill(tmpx, tmpy, color=c[rang%4])
plt.grid(True)
plt.show()

  注意上面代码中的n并不是上文开篇提到的公式中的n,开篇提到的n是指将每一个具体的插值区间(也就是小区间)等距插n个节点,复化梯形公式的n是固定的为1.

  而代码中的n指将大区间分为n个小区间。

复化梯形求积分——用Python进行数值计算的更多相关文章

  1. python与数值计算环境搭建

    数值计算的编程的软件很多种,也见过一些编程绘图软件的对比. 利用Python进行数值计算,需要用到numpy(矩阵) ,scipy(公式符号), matplotlib(绘图)这些工具包. 1.Linu ...

  2. 【编程练习】收集的一些c++代码片,算法排序,读文件,写日志,快速求积分等等

    写日志: class LogFile { public: static LogFile &instance(); operator FILE *() const { return m_file ...

  3. 之前写的收集的一些c++代码片,算法排序,读文件,写日志,快速求积分等等

    写日志: class LogFile { public: static LogFile &instance(); operator FILE *() const { return m_file ...

  4. 牛顿插值法——用Python进行数值计算

    拉格朗日插值法的最大毛病就是每次引入一个新的插值节点,基函数都要发生变化,这在一些实际生产环境中是不合适的,有时候会不断的有新的测量数据加入插值节点集, 因此,通过寻找n个插值节点构造的的插值函数与n ...

  5. Python 3 数值计算

    Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:43:06) [MSC v.1600 32 bit (Intel)] on win32Type & ...

  6. 分段二次插值——用Python进行数值计算

    事实上在实际使用中,高次插值显然是很不适合的,高次插值将所有样点包涵进一个插值函数中,这是次幂高的原因.高次计算复杂,而且刚开始的一点误差会被方的很大.因此将整个区间分为若干个小区间,在每一个小区间进 ...

  7. 埃尔米特插值问题——用Python进行数值计算

    当插值的要求涉及到对插值函数导数的要求时,普通插值问题就变为埃尔米特插值问题.拉格朗日插值和牛顿插值的要求较低,只需要插值函数的函数值在插值点与被插函数的值相等,以此来使得在其它非插值节点插值函数的值 ...

  8. 拉格朗日插值法——用Python进行数值计算

    插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关 ...

  9. simpson法求积分 专题练习

    [xsy1775]数值积分 题意 多组询问,求\(\int_l^r\sqrt{a(1-{x^2\over b})}dx\) 分析 double f(double x) { return sqrt(a* ...

随机推荐

  1. ZIP压缩算法详细分析及解压实例解释

    最近自己实现了一个ZIP压缩数据的解压程序,觉得有必要把ZIP压缩格式进行一下详细总结,数据压缩是一门通信原理和计算机科学都会涉及到的学科,在通信原理中,一般称为信源编码,在计算机科学里,一般称为数据 ...

  2. (系统架构)标准Web系统的架构分层

    标准Web系统的架构分层 1.架构体系分层图 在上图中我们描述了Web系统架构中的组成部分.并且给出了每一层常用的技术组件/服务实现.需要注意以下几点: 系统架构是灵活的,根据需求的不同,不一定每一层 ...

  3. 从零开始编写自己的C#框架(24)——测试

    导航 1.前言 2.不堪回首的开发往事 3.测试推动开发的成长——将Bug消灭在自测中 4.关于软件测试 5.制定测试计划 6.编写测试用例 7.执行测试用例 8.发现并提交Bug 9.开发人员修复B ...

  4. 如何区别char与varchar?

    1.varchar与char两个数据类型用于存储字符串长度小于255的字符,MySQL5.0之前是varchar支持最大255.比如向一个长度为40个字符的字段中输入一个为10个字符的数据.使用var ...

  5. Hadoop 2.x 生态系统及技术架构图

    一.负责收集数据的工具:Sqoop(关系型数据导入Hadoop)Flume(日志数据导入Hadoop,支持数据源广泛)Kafka(支持数据源有限,但吞吐大) 二.负责存储数据的工具:HBaseMong ...

  6. windows 7(32/64位)GHO安装指南(序篇)~

    大家好,本人是高三刚毕业,即将踏入校园的程序猿~我写这篇文章呢,主要是想巩固一下之前对于电脑的基础知识理论,也希望能帮助没有电脑基础的同学能维护一下自己的电脑,要是能帮助女生修电脑那就是更好啦~~哈哈 ...

  7. 初探java中this的用法

    一般this在各类语言中都表示“调用当前函数的对象”,java中也存在这种用法: public class Leaf { int i = 0; Leaf increment(){ i++; retur ...

  8. zerojs! 造出最好的 CMS 轮子

    zerojs是一个基于nodejs.angularjs.git的CMS.在它之上可以继续开发出博客.论坛.wiki等类似的内容管理型系统. 拥抱开发者和社区 层次清晰,高度解耦.前后端即使分开也都是完 ...

  9. C#将Word转换成PDF方法总结(基于Office和WPS两种方案)

    有时候,我们需要在线上预览word文档,当然我们可以用NPOI抽出Word中的文字和表格,然后显示到网页上面,但是这样会丢失掉Word中原有的格式和图片.一个比较好的办法就是将word转换成pdf,然 ...

  10. With(ReadPast)就不会被阻塞吗?

    在生产环境中,会有很多使用ReadPast查询提示的场合,来避免正在被其它事务锁定的行对当前查询造成阻塞,而又不会获取到“脏数据”. 可是很多人都疑惑,为什么我使用了ReadPast仍然有时会被阻塞? ...