2.7 编程之美--最大公约数的3种解法[efficient method to solve gcd problem]
【本文链接】
http://www.cnblogs.com/hellogiser/p/efficient-method-to-solve-gcd-problem.html
【题目】
求两个正整数的最大公约数Greatest Common Divisor (GCD)。如果两个正整数都很大,有什么简单的算法吗?例如,给定两个数1 100 100 210 001, 120 200 021,求出其最大公约数。
【解法】
【1. 辗转相除法】
辗转相除法:f(x,y) = f(y , x % y)(x>y)
f(42,30) = f(30,12) = f(12,6) = f(6,0) = 6
【代码】
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
/*
version: 1.0 author: hellogiser blog: http://www.cnblogs.com/hellogiser date: 2014/7/8 */ int gcd(int x, int y) |
此方法中用到了取模运算,对于大整数而言,取模运算(其中用到了除法)开销是非常昂贵的,将成为整个算法的瓶颈。
【2. 辗转相减法】
辗转相减法:f(x,y) = f(y, x-y) (x>y)
f(42,30) = f(30,12) = f(12,18) = f(18,12) = f(12,6)=f(6,6)=f(6,0)=6
【代码】
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
/*
version: 1.0 author: hellogiser blog: http://www.cnblogs.com/hellogiser date: 2014/7/8 */ int gcd(int x, int y) |
这个算法免去了大整数除法的繁琐,但同样也有不足之处。最大的瓶颈是迭代的次数过多,如果出现(1 000 000 000,1)这类情况,那就相当让人郁闷了。
【3. 奇偶法】
奇偶法:
此种方法是将解法1)和解法2)结合起来,降低计算复杂度的同时也降低迭代次数。
1:若 x, y均为偶数,f (x,y) = 2 * f(x / 2, y / 2) = 2 * f(x >> 1, y >> 1)
2:若x为偶,而y为奇,f (x , y ) = f (x / 2, y) = f ( x >> 1, y)
3:若x为奇,y为偶,f ( x, y) = f (x , y / 2) = f(x , y >> 1)
4:若x,y均为奇,f ( x, y ) = f (y , x - y)
在f(x, y) = f(y, x - y)之后,(x - y)是一个偶数,下一步一定会有除以2的操作。
因此最坏情况下时间复杂度为O(log2 (max(x,y)))。
f (42 , 30 ) = 2 * f (21,15)
= 2 * f (15,6)
= 2 * f (15,3)
= 2 * f (3,12) =2 * f (12,3)
= 2 * f (6,3)
= 2 * f (3,3)
= 2 * f (3,0)
= 2 * 3
= 6
【代码】
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
/*
version: 1.0 author: hellogiser blog: http://www.cnblogs.com/hellogiser date: 2014/7/8 */ bool IsEven(int x) int gcd(int x, int y) |
【参考】
http://blog.csdn.net/ajioy/article/details/7478008
http://blog.csdn.net/rein07/article/details/6739688
【本文链接】
http://www.cnblogs.com/hellogiser/p/efficient-method-to-solve-gcd-problem.html
2.7 编程之美--最大公约数的3种解法[efficient method to solve gcd problem]的更多相关文章
- java多线程编程题之连续打印abc的几种解法
一道编程题如下: 实例化三个线程,一个线程打印a,一个打印b,一个打印c,三个线程同时执行,要求打印出6个连着的abc 题目分析: 通过题意我们可以得出,本题需要我们使用三个线程,三个线程分别会打印6 ...
- 【编程之美】2.5 寻找最大的k个数
有若干个互不相等的无序的数,怎么选出其中最大的k个数. 我自己的方案:因为学过找第k大数的O(N)算法,所以第一反应就是找第K大的数.然后把所有大于等于第k大的数取出来. 写这个知道算法的代码都花了2 ...
- 【编程之美】CPU
今天开始看编程之美 .第一个问题是CPU的使用率控制,微软的问题果然高大上,我一看就傻了,啥也不知道.没追求直接看答案试了一下.发现自己电脑太好了,4核8线程,程序乱飘.加了一个进程绑定,可以控制一个 ...
- 编程之美_1.1 让CPU占用率曲线听你指挥
听到有人说让要写一个程序,让用户来决定Windows任务管理器的CPU占用率. 觉得很好奇.但第一个想法就是写个死循环.哈哈.不知道具体的占用率是多少,但至少能保证在程序运行时,CPU的占用率终会稳定 ...
- 编程之美的2.17,数组循环移位 & 字符串逆转(反转) Hello world Welcome => Welcome world Hello
代码如下:(类似于编程之美的2.17,数组循环移位) static void Main(string[] args) { string input = "Hello World Welcom ...
- [质疑]编程之美求N!的二进制最低位1的位置的问题
引子:编程之美给出了求N!的二进制最低位1的位置的二种思路,但是呢?但是呢?不信你仔细听我道来. 1.编程之美一书给出的解决思路 问题的目标是N!的二进制表示中最低位1的位置.给定一个整数N,求N!二 ...
- 编程之美 两个叶子的节点之间 最大距离 变种 leecode
提交地址: https://oj.leetcode.com/problems/binary-tree-maximum-path-sum/ 说一下思路http://www.cnblogs.com/mil ...
- 编程之美之数独求解器的C++实现方法
编程之美的第一章的第15节.讲的是构造数独.一開始拿到这个问题的确没有思路, 只是看了书中的介绍之后, 发现原来这个的求解思路和N皇后问题是一致的. 可是不知道为啥,反正一開始确实没有想到这个回溯法. ...
- 《编程之美》之如何控制CPU的暂用率固定在50%
<编程之美>第一章 让CPU暂用率听你指挥的粗糙实现,如何控制CPU的暂用率固定在50% #include <stdio.h> #include <Windows.h&g ...
随机推荐
- JMeter 测试Web登录
JMeter测试 前置条件: 1安装JMeter 下载地址:http://jmeter.apache.org/ 2安装badBoy http://www.badboy.com.au/download/ ...
- A星寻路算法
A星寻路算法 1.准备一个close关闭列表(存放已被检索的点),一个open开启列表(存放未被检索的点),一个当前点的对象cur 2.将cur设成开始点 3.从cur起,将cur点放入close表中 ...
- Android Launcher分析和修改9——Launcher启动APP流程
本来想分析AppsCustomizePagedView类,不过今天突然接到一个临时任务.客户反馈说机器界面的图标很难点击启动程序,经常点击了没有反应,Boss说要优先解决这问题.没办法,只能看看是怎么 ...
- C语言结构体的初始化
今天在工作时,看到了奇葩的结构体初始化方式,于是我查了一下C99标准文档和gcc的说明文档,终于搞清楚是怎么回事了. 假设有如下结构体定义: typedef struct { int a, b, c; ...
- BZOJ-1927 星际竞速 最小费用最大流+拆点+不坑建图
1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MB Submit: 1593 Solved: 967 [Submit][Statu ...
- SSL、TLS协议格式、HTTPS通信过程、RDP SSL通信过程
相关学习资料 http://www.360doc.com/content/10/0602/08/1466362_30787868.shtml http://www.gxu.edu.cn/college ...
- TCP/IP详解 笔记一
概述: Tcp-ip让网络上的计算机进行通信,而不管计算机和操作系统是否一样. 分层结构: Tcp/ip协议族是多层协议的组合,而tcp和ip只是其中的两个协议而已. 一个通信举例: 注意图的右上方: ...
- Metropolis Light Transport学习与实现
这段时间一直在看Metropolis Light Transport(简称mlt),现利用这篇博文把之前看资料已经coding上的一些体会记录下来. 1.Before MLT 在MLT算法被提出之前, ...
- Config The Image URL Solution
During the project, in order to make a unified management for the image URL , at present we make use ...
- pom.xml
使用intelJ idea 导入maven包管理文件是,使用Import的方式导入,会自动导入pom.xml来导入包. pom.xml会指定父子关系. 例如,总模块的pom.xml中有一下内容: &l ...