ACM Computer Factory
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 4829 Accepted: 1641 Special Judge

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j— input specification for part jDi,k — output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1
3 4
15  0 0 0  0 1 0
10  0 0 0  0 1 1
30  0 1 2  1 1 1
3   0 2 1  1 1 1
Sample input 2
3 5
5   0 0 0  0 1 0
100 0 1 0  1 0 1
3   0 1 0  1 1 0
1   1 0 1  1 1 0
300 1 1 2  1 1 1
Sample input 3
2 2
100  0 0  1 0
200  0 1  1 1

Sample Output

Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.

Source

Northeastern Europe 2005, Far-Eastern Subregion

带有拆点+寻找路径的最大流。。。。。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>

using namespace std;

const int INF=0x3f3f3f3f;
const int MaxE=3000,MaxV=300;

struct Edge
{
    int to,next,flow,init_flow;
}E[MaxE];

bool vis[MaxV];
int Adj[MaxV],Size,dist[MaxV],src,sink;

void Init()
{
    Size=0; memset(Adj,-1,sizeof(Adj));
}

void Add_Edge(int u,int v,int w)
{
    E[Size].to=v;E[Size].next=Adj;E[Size].flow=E[Size].init_flow=w;Adj=Size++;
    E[Size].to=u;E[Size].next=Adj[v];E[Size].flow=E[Size].init_flow=0;Adj[v]=Size++;
}

void bfs()
{
    memset(vis,false,sizeof(vis));
    memset(dist,0,sizeof(dist));
    queue<int> q;
    q.push(src);  vis[src]=true;
    while(!q.empty())
    {
        int u=q.front(); q.pop();
        for(int i=Adj;~i;i=E.next)
        {
            int v=E.to;
            if(E.flow&&!vis[v])
            {
                q.push(v); vis[v]=true;
                dist[v]=dist+1;
            }
        }
    }
}

int dfs(int u,int delta)
{
    if(u==sink)
    {
        return delta;
    }
    else
    {
        int ret=0;
        for(int i=Adj;~i&&delta;i=E.next)
        {
            int v=E.to;
            if(E.flow&&dist[v]==dist+1)
            {
                int dd=dfs(v,min(E.flow,delta));
                E.flow-=dd; E[i^1].flow+=dd;
                delta-=dd; ret+=dd;
            }
        }
        return ret;
    }
}

int maxflow()
{
    int ret=0;
    while(true)
    {
        bfs();
        if(!vis[sink]) return ret;
        ret+=dfs(src,INF);
    }
}

struct mechine
{
    int time,in[20],out[20];
}M[100];

int main()
{
    int p,n;
    while(scanf("%d%d",&p,&n)!=EOF)
    {
        Init();

for(int i=1;i<=n;i++)
        {
            scanf("%d",&M.time);
            for(int j=0;j<p;j++)
            {
                scanf("%d",&M.in[j]);
            }
            for(int j=0;j<p;j++)
            {
                scanf("%d",&M.out[j]);
            }
        }
        for(int i=1;i<=n;i++)
        {
            Add_Edge(i,i+n,M.time);
            for(int j=1;j<=n;j++)
            {
                if(i==j) continue;
                bool flag=true;
                for(int k=0;k<p;k++)
                {
                    if(M.out[k]==M[j].in[k]) continue;
                    else if(M[j].in[k]==2) continue;
                    else
                    {
                        flag=false;
                        break;
                    }
                }
                if(flag)
                {
                    Add_Edge(i+n,j,INF);
                }
            }
            bool flagS=true,flagT=true;
            for(int k=0;k<p;k++)
            {
                if(M.in[k]==1) flagS=false;
                if(M.out[k]==0) flagT=false;
            }
            if(flagS) Add_Edge(0,i,INF);
            if(flagT) Add_Edge(i+n,2*n+1,INF);
        }
        src=0; sink=2*n+1;
        int Flow=maxflow();
        int num=0;
        for(int u=n+1;u<=2*n;u++)
        {
            for(int i=Adj;~i;i=E.next)
            {
                int v=E.to;
                if(v>0&&v<=n&&E.init_flow-E.flow>0)
                    num++;
            }
        }
        printf("%d %d\n",Flow,num);
        for(int u=n+1;u<=2*n;u++)
        {
            for(int i=Adj;~i;i=E.next)
            {
                int v=E.to;
                if(v>0&&v<=n&&E.init_flow-E.flow>0)
                    printf("%d %d %d\n",u-n,v,E.init_flow-E.flow);
            }
        }

}
    return 0;
}

* This source code was highlighted by YcdoiT. ( style: Codeblocks )

POJ 3464 ACM Computer Factory的更多相关文章

  1. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  2. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  3. POJ 3436 ACM Computer Factory

    题意:   为了追求ACM比赛的公平性,所有用作ACM比赛的电脑性能是一样的,而ACM董事会专门有一条生产线来生产这样的电脑,随着比赛规模的越来越大,生产线的生产能力不能满足需要,所以说ACM董事会想 ...

  4. POJ 3436 ACM Computer Factory 最大流,拆点 难度:1

    题目 http://poj.org/problem?id=3436 题意 有一条生产线,生产的产品共有p个(p<=10)零件,生产线上共有n台(n<=50)机器,每台机器可以每小时加工Qi ...

  5. POJ - 3436 ACM Computer Factory(最大流)

    https://vjudge.net/problem/POJ-3436 题目描述:  正如你所知道的,ACM 竞赛中所有竞赛队伍使用的计算机必须是相同的,以保证参赛者在公平的环境下竞争.这就是所有这些 ...

  6. POJ 3436 ACM Computer Factory(最大流+路径输出)

    http://poj.org/problem?id=3436 题意: 每台计算机包含P个部件,当所有这些部件都准备齐全后,计算机就组装完成了.计算机的生产过程通过N台不同的机器来完成,每台机器用它的性 ...

  7. POJ - 3436 ACM Computer Factory 网络流

    POJ-3436:http://poj.org/problem?id=3436 题意 组配计算机,每个机器的能力为x,只能处理一定条件的计算机,能输出特定的计算机配置.进去的要求有1,进来的计算机这个 ...

  8. POJ 3436 ACM Computer Factory (拆点+输出解)

    [题意]每台计算机由P个零件组成,工厂里有n台机器,每台机器针对P个零件有不同的输入输出规格,现在给出每台机器每小时的产量,问如何建立流水线(连接各机器)使得每小时生产的计算机最多. 网络流的建图真的 ...

  9. kuangbin专题专题十一 网络流 POJ 3436 ACM Computer Factory

    题目链接:https://vjudge.net/problem/POJ-3436 Sample input 1 3 4 15 0 0 0 0 1 0 10 0 0 0 0 1 1 30 0 1 2 1 ...

随机推荐

  1. 微软office web apps 服务器搭建之在线文档预览(一)

    office web apps安装 系统要求为Windows Server 2012, 注意:转换文档需要两台服务器,一台为转换server,另外一台为域控server.(至于为什么要两台,这个请自行 ...

  2. 阿里客户端工程师试题简析——Android应用的闪退(crash)分析

    1. 问题描述 闪退(Crash)是客户端程序在运行时遭遇无法处理的异常或错误时而退出应用程序的表现,请从crash发生的原因分类与解决方法.在出现crash后如何捕捉并分析异常这两个问题给出自己的解 ...

  3. 鼠标滚动插件smoovejs和wowjs

    置顶文章:<纯CSS打造银色MacBook Air(完整版)> 上一篇:<图片ping.JSONP和CORS跨域> 作者主页:myvin 博主QQ:851399101(点击QQ ...

  4. css清楚浮动的几种常用方法

    请先看博客:http://www.jb51.net/css/173023.html

  5. [USACO2005][POJ2454]Jersey Politics(随机化)

    题目:http://poj.org/problem?id=2454 题意:给你3*k(k<=60)个数,你要将它们分成3个长度为k的序列,使得其中至少有两个序列的和大于k*500 分析:以为有高 ...

  6. mysqldump使用方法

    1.mysqldump的几种常用方法: (1)导出整个数据库(包括数据库中的数据) mysqldump -u username -p dbname > dbname.sql (2)导出数据库结构 ...

  7. 2016 版 Laravel 系列入门教程(五)【最适合中国人的 Laravel 教程】

    本教程示例代码见: https://github.com/johnlui/Learn-Laravel-5 在任何地方卡住,最快的办法就是去看示例代码. 本文是本系列教程的完结篇,我们将一起给 Arti ...

  8. JS模式-基本的单例模式

    //singleton var SingletonTester = (function(){ function Singleton(options){ options = options || {}; ...

  9. NOI2005维修数列 splay

    好题,错了不知道多少遍.这题其他几个操作都是比较经典的,多了一个最大子序列的.这时候对于当前的区间,最大子序列,可能使左区间的最值,可能是右区间的最值,也可能是整个区间的.所以维护lx[],rx[], ...

  10. 【Matplotlib】 刻度设置(2)

    Tick locating and formatting 该模块包括许多类以支持完整的刻度位置和格式的配置.尽管 locators 与主刻度或小刻度没有关系,他们经由 Axis 类使用来支持主刻度和小 ...