ACM Computer Factory
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 4829 Accepted: 1641 Special Judge

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j— input specification for part jDi,k — output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1
3 4
15  0 0 0  0 1 0
10  0 0 0  0 1 1
30  0 1 2  1 1 1
3   0 2 1  1 1 1
Sample input 2
3 5
5   0 0 0  0 1 0
100 0 1 0  1 0 1
3   0 1 0  1 1 0
1   1 0 1  1 1 0
300 1 1 2  1 1 1
Sample input 3
2 2
100  0 0  1 0
200  0 1  1 1

Sample Output

Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.

Source

Northeastern Europe 2005, Far-Eastern Subregion

带有拆点+寻找路径的最大流。。。。。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>

using namespace std;

const int INF=0x3f3f3f3f;
const int MaxE=3000,MaxV=300;

struct Edge
{
    int to,next,flow,init_flow;
}E[MaxE];

bool vis[MaxV];
int Adj[MaxV],Size,dist[MaxV],src,sink;

void Init()
{
    Size=0; memset(Adj,-1,sizeof(Adj));
}

void Add_Edge(int u,int v,int w)
{
    E[Size].to=v;E[Size].next=Adj;E[Size].flow=E[Size].init_flow=w;Adj=Size++;
    E[Size].to=u;E[Size].next=Adj[v];E[Size].flow=E[Size].init_flow=0;Adj[v]=Size++;
}

void bfs()
{
    memset(vis,false,sizeof(vis));
    memset(dist,0,sizeof(dist));
    queue<int> q;
    q.push(src);  vis[src]=true;
    while(!q.empty())
    {
        int u=q.front(); q.pop();
        for(int i=Adj;~i;i=E.next)
        {
            int v=E.to;
            if(E.flow&&!vis[v])
            {
                q.push(v); vis[v]=true;
                dist[v]=dist+1;
            }
        }
    }
}

int dfs(int u,int delta)
{
    if(u==sink)
    {
        return delta;
    }
    else
    {
        int ret=0;
        for(int i=Adj;~i&&delta;i=E.next)
        {
            int v=E.to;
            if(E.flow&&dist[v]==dist+1)
            {
                int dd=dfs(v,min(E.flow,delta));
                E.flow-=dd; E[i^1].flow+=dd;
                delta-=dd; ret+=dd;
            }
        }
        return ret;
    }
}

int maxflow()
{
    int ret=0;
    while(true)
    {
        bfs();
        if(!vis[sink]) return ret;
        ret+=dfs(src,INF);
    }
}

struct mechine
{
    int time,in[20],out[20];
}M[100];

int main()
{
    int p,n;
    while(scanf("%d%d",&p,&n)!=EOF)
    {
        Init();

for(int i=1;i<=n;i++)
        {
            scanf("%d",&M.time);
            for(int j=0;j<p;j++)
            {
                scanf("%d",&M.in[j]);
            }
            for(int j=0;j<p;j++)
            {
                scanf("%d",&M.out[j]);
            }
        }
        for(int i=1;i<=n;i++)
        {
            Add_Edge(i,i+n,M.time);
            for(int j=1;j<=n;j++)
            {
                if(i==j) continue;
                bool flag=true;
                for(int k=0;k<p;k++)
                {
                    if(M.out[k]==M[j].in[k]) continue;
                    else if(M[j].in[k]==2) continue;
                    else
                    {
                        flag=false;
                        break;
                    }
                }
                if(flag)
                {
                    Add_Edge(i+n,j,INF);
                }
            }
            bool flagS=true,flagT=true;
            for(int k=0;k<p;k++)
            {
                if(M.in[k]==1) flagS=false;
                if(M.out[k]==0) flagT=false;
            }
            if(flagS) Add_Edge(0,i,INF);
            if(flagT) Add_Edge(i+n,2*n+1,INF);
        }
        src=0; sink=2*n+1;
        int Flow=maxflow();
        int num=0;
        for(int u=n+1;u<=2*n;u++)
        {
            for(int i=Adj;~i;i=E.next)
            {
                int v=E.to;
                if(v>0&&v<=n&&E.init_flow-E.flow>0)
                    num++;
            }
        }
        printf("%d %d\n",Flow,num);
        for(int u=n+1;u<=2*n;u++)
        {
            for(int i=Adj;~i;i=E.next)
            {
                int v=E.to;
                if(v>0&&v<=n&&E.init_flow-E.flow>0)
                    printf("%d %d %d\n",u-n,v,E.init_flow-E.flow);
            }
        }

}
    return 0;
}

* This source code was highlighted by YcdoiT. ( style: Codeblocks )

POJ 3464 ACM Computer Factory的更多相关文章

  1. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  2. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  3. POJ 3436 ACM Computer Factory

    题意:   为了追求ACM比赛的公平性,所有用作ACM比赛的电脑性能是一样的,而ACM董事会专门有一条生产线来生产这样的电脑,随着比赛规模的越来越大,生产线的生产能力不能满足需要,所以说ACM董事会想 ...

  4. POJ 3436 ACM Computer Factory 最大流,拆点 难度:1

    题目 http://poj.org/problem?id=3436 题意 有一条生产线,生产的产品共有p个(p<=10)零件,生产线上共有n台(n<=50)机器,每台机器可以每小时加工Qi ...

  5. POJ - 3436 ACM Computer Factory(最大流)

    https://vjudge.net/problem/POJ-3436 题目描述:  正如你所知道的,ACM 竞赛中所有竞赛队伍使用的计算机必须是相同的,以保证参赛者在公平的环境下竞争.这就是所有这些 ...

  6. POJ 3436 ACM Computer Factory(最大流+路径输出)

    http://poj.org/problem?id=3436 题意: 每台计算机包含P个部件,当所有这些部件都准备齐全后,计算机就组装完成了.计算机的生产过程通过N台不同的机器来完成,每台机器用它的性 ...

  7. POJ - 3436 ACM Computer Factory 网络流

    POJ-3436:http://poj.org/problem?id=3436 题意 组配计算机,每个机器的能力为x,只能处理一定条件的计算机,能输出特定的计算机配置.进去的要求有1,进来的计算机这个 ...

  8. POJ 3436 ACM Computer Factory (拆点+输出解)

    [题意]每台计算机由P个零件组成,工厂里有n台机器,每台机器针对P个零件有不同的输入输出规格,现在给出每台机器每小时的产量,问如何建立流水线(连接各机器)使得每小时生产的计算机最多. 网络流的建图真的 ...

  9. kuangbin专题专题十一 网络流 POJ 3436 ACM Computer Factory

    题目链接:https://vjudge.net/problem/POJ-3436 Sample input 1 3 4 15 0 0 0 0 1 0 10 0 0 0 0 1 1 30 0 1 2 1 ...

随机推荐

  1. Opencv step by step - 图像变换

    这里举出三个案例: #include <cv.h> #include <highgui.h> void image_smooth(IplImage * image) { cvN ...

  2. SpringMVC重定向视图RedirectView小分析

    目录 前言 RedirectView介绍 实例讲解 总结 前言 SpringMVC是目前主流的Web MVC框架之一. 如果有同学对它不熟悉,那么请参考它的入门blog:http://www.cnbl ...

  3. on 在ios下 父对象是body的时候会 不调用

    on 用委托的形式绑定事件 在ios下 父对象是body 获取 docment的时候会 不调用 解决方案  在这些元素上加 cursor: pointer;

  4. DELL VENUE 11 PRO系统损坏之后的解决办法

    首页说明下我的平板是dell venue 11 pro atom版+win8.1版. 前两天测试玩win10,结果后来几天这货直接开不了机了,每次提示自动修复,但是却说找不到某一文件,然后蓝屏,win ...

  5. jquery设置元素的readonly与diabled属性方法

    cppy from : http://www.cnblogs.com/RascallySnake/archive/2010/08/03/1791365.html Jquery的api中提供了对元素应用 ...

  6. QQ提醒的功能

    原文出处:http://www.cnblogs.com/xiexingen/archive/2013/04/09/3009921.html http://qzs.qq.com/snsapp/app/b ...

  7. nginx 出现413 Request Entity Too Large问题的解决方法

    nginx 出现413 Request Entity Too Large问题的解决方法 使用php上传图片(大小1.9M),出现 nginx: 413 Request Entity Too Large ...

  8. 团队项目作业第二项:利用NABCD模型进行竞争性需求分析

    项目需求分析与建议--NABCD模型(王鲁跃负责) N (Need 需求) 对于现在的学生来说,我们认为打字是很重要的.不管在什么方面都需要进行电脑打字,例如文员.QQ.MSN.制作,论文等等,都需要 ...

  9. 【codevs 1200】【NOIP 2012】同余方程 拓展欧几里德求乘法逆元模板题

    模板,,, #include<cstdio> using namespace std; void exgcd(long long a,long long b,long long & ...

  10. 【BZOJ 3036】 绿豆蛙的归宿

    求期望的题目(~~~water~~~) 压了下代码,压成15行hhh: 我把代码压成这么丑估计也没有人看吧: 毕竟是zky讲的一个水题,就当给博客除草了:    dfs回溯时求当前节点的f,除以当前节 ...