BZOJ3482 : [COCI2013]hiperprostor
对于每组询问,spfa求出f[i][j]表示从S出发,经过j条x边到达i的最短路。
若f[T][i]都为inf,则无解。
若f[T][0]为inf,则有无穷个解。
否则可以看作若干条直线,$O(n)$求出凸壳。
算出相邻两条直线交点横坐标并取下整,若刚好为整数则-1,设b[i]为i与i+1的交点的横坐标。
则第i(1<=i<t)段的贡献为首项为f(b[i-1]+1),末项为f(b[i])的等差数列。
最后一段的斜率为0,所以贡献为f[T][0]。
#include<cstdio>
typedef long long ll;
const int N=510,M=10010,inf=~0U>>1;
int n,m,i,j,x,y,z,S,T,g[N],v[M],w[M],nxt[M],ed,f[N][N],in[N][N],q[1000000][2];
int h,t,a[N],b[N],cnt;ll sum;
inline void read(int&a){
char c;
while(!((((c=getchar())>='0')&&(c<='9'))||(c=='x')));
if(c=='x'){a=0;return;}
a=c-'0';
while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';
}
inline void addedge(int x,int y,int z){v[++ed]=y;w[ed]=z;nxt[ed]=g[x];g[x]=ed;}
inline void add(int x,int y,int z){
if(y>=n)return;
if(f[x][y]<=z)return;
f[x][y]=z;
if(!in[x][y])in[x][y]=1,q[++t][0]=x,q[t][1]=y;
}
inline double cross(int x,int y){return (double)(f[T][x]-f[T][y])/(double)(y-x);}
inline int crossi(int x,int y){
int a=f[T][y]-f[T][x],b=x-y;
if(a<=0)return 0;
return(a-1)/b;
}
inline void cal(int k,int b,int l,int r){
if(l<1)l=1;
if(l>r)return;
cnt+=r-l+1;
sum+=((ll)(l+r)*k+2LL*b)*(r-l+1)/2;
}
int main(){
read(n),read(m);
while(m--)read(x),read(y),read(z),addedge(x,y,z);
read(m);
while(m--){
read(S),read(T);
for(i=1;i<=n;i++)for(j=0;j<n;j++)f[i][j]=inf;
h=1,t=0,add(S,0,0);
while(h<=t){
x=q[h][0],y=q[h++][1],in[x][y]=0;
for(i=g[x];i;i=nxt[i])add(v[i],y+(w[i]==0),f[x][y]+w[i]);
}
for(j=0;j<n;j++)if(f[T][j]<inf)break;
if(j==n){puts("0 0");continue;}
if(f[T][0]==inf){puts("inf");continue;}
for(t=0,i=n-1;~i;i--)if(f[T][i]<inf){
while(t>1&&cross(a[t-1],a[t])>=cross(a[t],i))t--;
a[++t]=i;
}
cnt=1,sum=f[T][0];
for(i=1;i<t;i++)cal(a[i],f[T][a[i]],b[i-1]+1,b[i]=crossi(a[i],a[i+1]));
printf("%d %lld\n",cnt,sum);
}
return 0;
}
BZOJ3482 : [COCI2013]hiperprostor的更多相关文章
- 【BZOJ 3482】 3482: [COCI2013]hiperprostor (dij+凸包)
3482: [COCI2013]hiperprostor Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 277 Solved: 81 Descrip ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- [COCI2013]DLAKAVAC
[COCI2013]DLAKAVAC 题目大意: 有一个长度为\(m(m\le1500)\)的\(01\)串\(A\),进行\(k(k\le10^{18})\)次操作.一次操作完的串中若\(A_i=1 ...
- 【JZOJ3238】【BZOJ3482】超空间旅行
description 在遥远的未来,行星之间的食品运输将依靠单向的贸易路线.每条路径直接连接两个行星,且其运输时间是已知的. 贸易商协会打算利用一项最近发现的新技术--超空间旅行,以增加一些新的航线 ...
随机推荐
- UIImagePickerController详解
转载自:http://blog.csdn.net/kingsley_cxz/article/details/9157093 1.UIImagePickerController的静态方法: imagep ...
- xcode SVN
Mac上SVN的管理工具: CornerStone http://blog.csdn.net/wohaoxuexi/article/details/8444184 步骤: 1. import 项目到s ...
- 在CentOS 6.4中编译安装gcc 4.8.1
在CentOS 6.4中编译安装gcc 4.8.1 分类: C/C++ Linux/Unix2013-11-28 21:02 1877人阅读 评论(0) 收藏 举报 原文链接:http://www.c ...
- 用chrome模拟微信浏览器访问需要OAuth2.0网页授权的页面
现在很流行微信网页小游戏,用html5制作的小游戏移过来,可以放到微信浏览器中打开,关键是可以做成微信分享朋友圈的形式,大大提高游戏的传播,增强好友的游戏互动. 微信浏览器中打开网页游戏效果还不错,对 ...
- Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- canvas API ,通俗的canvas基础知识(三)
全文说到了三角形,圆形等相关图形的画法,不熟悉的同学可以出门右转,先看看前文,接下来继续我们的图形——曲线. 学过数学,或者是比较了解js 的同学都知道贝塞尔曲线,当然,在数学里面,这是一门高深的学问 ...
- 【JAVA、C++】LeetCode 007 Reverse Integer
Reverse digits of an integer. Example1: x = 123, return 321 Example2: x = -123, return -321 解题思路:将数字 ...
- poj 1007 DNA Sorting 解题报告
题目链接:http://poj.org/problem?id=1007 本题属于字符串排序问题.思路很简单,把每行的字符串和该行字符串统计出的字母逆序的总和看成一个结构体.最后把全部行按照这个总和从小 ...
- 一个iOS图片选择器的DEMO(实现图片添加,宫格排列,图片长按删除,以及图片替换等功能)
在开发中,经常用到选择多张图片进行上传或作其他处理等等,以下DEMO满足了此功能中的大部分功能,可直接使用到项目中. 主要功能如下: 1,图片九宫格排列(可自动设置) 2,图片长按抖动(仿苹果软件删除 ...
- [编解码] 关于base64编码的原理及实现
转载自: http://www.cnblogs.com/hongru/archive/2012/01/14/2321397.html [Base64]-base64的编码都是按字符串长度,以每3个8b ...