POJ 3373 Changing Digits(DP)
记录路径的DP,看的别人的思路。自己写的也不好,时间居然2000+,中间的取余可以打个表,优化一下。
写的各种错,导致wa很多次,写了一下午,自己构造数据,终于发现了最后一个bug。
dp[i][j]表示前i位取余得到j,需要最少改变多少位。
这样可以得到最少改变多少位了,但是,还要保证,最小。学习别人的题解,开一个标记数组,先从后倒回来,把这些可以达到最小的路径都记录下来。
然后再从头找最小的那一条路径。这样就能保证,最小了。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define INF 100000000
int dp[][];
bool o[][];
int que[];
int main()
{
int i,j,k,n,m,t,z,pos;
char str[];
while(scanf("%s%d",str,&m)!=EOF)
{
n = strlen(str);
if(n == )
{
if((str[]-'')%m == )
printf("%d\n",str[]-'');
else
printf("0\n");
continue;
}
for(i = ; i < n; i ++)
{
for(j = ; j < m; j ++)
{
dp[i][j] = INF;
o[i][j] = ;
}
}
for(i = ; i < ; i ++)
{
t = i%m;
if(i == str[]-'')
z = ;
else
z = ;
dp[][t] = min(dp[][t],z);
}
for(i = ; i < n-; i ++)
{
for(j = ; j < m; j ++)
{
if(dp[i][j] == INF) continue;
for(k = ; k < ; k ++)
{
if(k == str[i+]-'')
z = ;
else
z = ;
dp[i+][(j*+k)%m] = min(dp[i+][(j*+k)%m],dp[i][j]+z);
}
}
}
o[n-][] = ;
for(i = n-; i >= ; i --)
{
for(j = ; j < m; j ++)
{
if(dp[i][j] == INF) continue;
for(k = ; k < ; k ++)
{
if(k == str[i+]-'')
z = ;
else
z = ;
if(dp[i+][(j*+k)%m] == dp[i][j]+z&&o[i+][(j*+k)%m])
{
o[i][j] = ;
}
}
}
}
for(i = ; i < ; i ++)
{
t = i%m;
if(i == str[]-'')
z = ;
else
z = ;
if(o[][t]&&dp[][t] == z)
{
printf("%d",i);
pos = t;
break;
}
}
for(i = ;i < n;i ++)
{
for(j = ;j < ;j ++)
{
if(j == str[i]-'')
z = ;
else
z = ;
if(o[i][(pos*+j)%m]&&dp[i][(pos*+j)%m] == dp[i-][pos]+z)
{
printf("%d",j);
pos = (pos*+j)%m;
break;
}
}
}
printf("\n");
}
return ;
}
POJ 3373 Changing Digits(DP)的更多相关文章
- poj 3373 Changing Digits (DFS + 记忆化剪枝+鸽巢原理思想)
http://poj.org/problem?id=3373 Changing Digits Time Limit: 3000MS Memory Limit: 65536K Total Submi ...
- POJ 3373 Changing Digits 好蛋疼的DP
一開始写的高位往低位递推,发现这样有些时候保证不了第四条要求.于是又開始写高位往低位的记忆化搜索,又发现传參什么的蛋疼的要死.然后又发现高位開始的记忆化搜索就是从低位往高位的递推呀,遂过之. dp[i ...
- POJ 3373 Changing Digits
题目大意: 给出一个数n,求m,使得m的长度和n相等.能被k整除.有多个数符合条件输出与n在每位数字上改变次数最小的.改变次数同样的输出大小最小的. 共同拥有两种解法:DP解法,记忆化搜索的算法. ...
- POJ 3373 Changing Digits 记忆化搜索
这道题我是看了别人的题解才做出来的.题意和题解分析见原文http://blog.csdn.net/lyy289065406/article/details/6698787 这里写一下自己对题目的理解. ...
- POJ.3624 Charm Bracelet(DP 01背包)
POJ.3624 Charm Bracelet(DP 01背包) 题意分析 裸01背包 代码总览 #include <iostream> #include <cstdio> # ...
- POJ 2995 Brackets 区间DP
POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...
- poj 3254 状压dp入门题
1.poj 3254 Corn Fields 状态压缩dp入门题 2.总结:二进制实在巧妙,以前从来没想过可以这样用. 题意:n行m列,1表示肥沃,0表示贫瘠,把牛放在肥沃处,要求所有牛不能相 ...
- POJ 1260 Pearls 简单dp
1.POJ 1260 2.链接:http://poj.org/problem?id=1260 3.总结:不太懂dp,看了题解 http://www.cnblogs.com/lyy289065406/a ...
- poj 1463 Strategic game DP
题目地址:http://poj.org/problem?id=1463 题目: Strategic game Time Limit: 2000MS Memory Limit: 10000K Tot ...
随机推荐
- windows下的C/C++精确计时
由于我要测试线性筛法的速度,用上了C/C++精确计时.此时传统的clock()方法不够用了,我们需要另一种测量的办法,即CPUTicks/CPUFreq.如何实现呢? #include <win ...
- 【leetcode】Best Time to Buy and Sell Stock II
Best Time to Buy and Sell Stock II Say you have an array for which the ith element is the price of a ...
- 【转】Kettle集群
本文转自:http://blog.csdn.net/dqswuyundong/article/details/5952009 Kettle集群 Kettle是一款开源的ETL工具,以其高效和可扩展性而 ...
- 6.python模块(导入,内置,自定义,开源)
一.模块 1.模块简介 模块是一个包含所有你定义的函数和变量的文件,其后缀名是.py.模块可以被别的程序引入,以使用该模块中的函数等功能.这也是使用python标准库的方法. 类似于函数式编程和面向过 ...
- hdu 1050 Moving Tables 解题报告
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1050 这道题目隔了很久才做出来的.一开始把判断走廊有重叠的算法都想错了.以为重叠只要满足,下一次mov ...
- h5 canvas 画图
h5 canvas 画图 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...
- WPF MVVM 关闭View
在ViewModel中定义一个变量: private Action _closeAction; 在ViewModel的构造函数中这样定义:public MainWindowViewModel(Acti ...
- Phpcms V9网站从本地上传到服务器需要修改的地方
网站在本地做好后要迁移到服务器上:网站在发展的过程中,很可能多次的修改域名.那么在Phpcms V9中我们要怎么进行设置呢 请进行以下步骤的修改: Phpcms V9网站上传到服务器具体方法如下: ...
- CPU的性能对比
笔记本CPU之前的性能对比 下面的分数都是根据PerformanceTest测试的出来的结果,现在的笔记本CPU有很多种,你在购买笔记本的时候只看到CPU的型号,而且现在的CPU型号太多而且命名方式也 ...
- 硬盘工具diskpart
1.cmd 2.diskpart 3.list disk (查看硬盘) 4.select disk n (选择硬盘,n是数字) 5.list partition (查看分区) ...