AIAIndividual.py

 import numpy as np
import ObjFunction class AIAIndividual: '''
individual of artificial immune algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0
self.concentration = 0 def generate(self):
'''
generate a random chromsome for artificial immune algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)

AIA.py

 import numpy as np
from AIAIndividual import AIAIndividual
import random
import copy
import matplotlib.pyplot as plt class ArtificialImmuneAlgorithm: '''
The class for artificial immune algorithm
''' def __init__(self, sizepop, sizemem, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
params: algorithm required parameters, it is a list which is consisting of [mutation rate, cloneNum]
'''
self.sizepop = sizepop
self.sizemem = sizemem
self.MAXGEN = MAXGEN
self.vardim = vardim
self.bound = bound
self.population = []
self.clonePopulation = []
self.memories = []
self.cloneMemories = []
self.popFitness = np.zeros(self.sizepop)
self.popCloneFitness = np.zeros(
int(self.sizepop * self.sizepop * params[1]))
self.memfitness = np.zero(self.sizemem)
self.memClonefitness = np.zero(
int(self.sizemem * self.sizemem * params[1]))
self.trace = np.zeros((self.MAXGEN, 2))
self.params = params def initialize(self):
'''
initialize the population
'''
for i in xrange(0, self.sizepop):
ind = AIAIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind)
for i in xrange(0, self.sizemem):
ind = AIAIndividual(self.vardim, self.bound)
ind.generate()
self.memories.append(ind) def evaluatePopulation(self, flag):
'''
evaluation of the population fitnesses
'''
if flag == 1:
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.popFitness[i] = self.population[i].fitness
else:
for i in xrange(0, self.sizemem):
self.memories[i].calculateFitness()
self.memfitness[i] = self.memories[i].fitness def evaluateClone(self, flag):
'''
evaluation of the clone fitnesses
'''
if flag == 1:
for i in xrange(0, self.sizepop):
self.clonePopulation[i].calculateFitness()
self.popCloneFitness[i] = self.clonePopulation[i].fitness
else:
for i in xrange(0, self.sizemem):
self.cloneMemories[i].calculateFitness()
self.memClonefitness[i] = self.cloneMemories[i].fitness def solve(self):
'''
evolution process of artificial immune algorithm
'''
self.t = 0
self.initialize()
self.best = AIAIndividual(self.vardim, self.bound)
while (self.t < self.MAXGEN):
# evolution of population
self.cloneOperation(1)
self.mutationOperation(1)
self.evaluatePopulation(1)
self.selectionOperation(1) # evolution of memories
self.cloneOperation(2)
self.mutationOperation(2)
self.evaluatePopulation()
self.selectionOperation(2) best = np.max(self.popFitness)
bestIndex = np.argmax(self.popFitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.popFitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
self.t += 1 print("Optimal function value is: %f; " %
self.trace[self.t - 1, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def cloneOperation(self, individuals):
'''
clone operation for alforithm immune algorithm
'''
newpop = []
sizeInds = len(individuals)
for i in xrange(0, sizeInds):
for j in xrange(0, int(self.params[1] * sizeInds)):
newpop.append(copy.deepcopy(individuals[i]))
return newpop def selectionOperation(self, flag):
'''
selection operation for artificial immune algorithm
'''
if flag == 1:
sortedIdx = np.argsort(-self.clonefit)
for i in xrange(0, int(self.sizepop*self.sizepop*self.params[1]):
tmpInd = individuals[sortedIdx[i]]
if tmpInd.fitness > self.population[i].fitness:
self.population[i] = tmpInd
self.popFitness[i] = tmpInd.fitness
else:
pass
newpop = []
sizeInds = len(individuals)
fitness = np.zeros(sizeInds)
for i in xrange(0, sizeInds):
fitness[i] = individuals[i].fitness
sortedIdx = np.argsort(-fitness)
for i in xrange(0, sizeInds):
tmpInd = individuals[sortedIdx[i]]
if tmpInd.fitness > self.population[i].fitness:
self.population[i] = tmpInd
self.popFitness[i] = tmpInd.fitness def mutationOperation(self, individuals):
'''
mutation operation for artificial immune algorithm
'''
newpop = []
sizeInds = len(individuals)
for i in xrange(0, sizeInds):
newpop.append(copy.deepcopy(individuals[i]))
r = random.random()
if r < self.params[0]:
mutatePos = random.randint(0, self.vardim - 1)
theta = random.random()
if theta > 0.5:
newpop[i].chrom[mutatePos] = newpop[i].chrom[
mutatePos] - (newpop[i].chrom[mutatePos] - self.bound[0, mutatePos]) * (1 - random.random() ** (1 - self.t / self.MAXGEN))
else:
newpop[i].chrom[mutatePos] = newpop[i].chrom[
mutatePos] + (self.bound[1, mutatePos] - newpop[i].chrom[mutatePos]) * (1 - random.random() ** (1 - self.t / self.MAXGEN))
for k in xrange(0, self.vardim):
if newpop.chrom[mutatePos] < self.bound[0, mutatePos]:
newpop.chrom[mutatePos] = self.bound[0, mutatePos]
if newpop.chrom[mutatePos] > self.bound[1, mutatePos]:
newpop.chrom[mutatePos] = self.bound[1, mutatePos]
newpop.calculateFitness()
return newpop def printResult(self):
'''
plot the result of the artificial immune algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Artificial immune algorithm for function optimization")
plt.legend()
plt.show()

运行程序:

 if __name__ == "__main__":

     bound = np.tile([[-600], [600]], 25)
aia = AIA(100, 25, bound, 100, [0.9, 0.1])
aia.solve()

ObjFunction见简单遗传算法-python实现

人工免疫算法-python实现的更多相关文章

  1. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  2. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  3. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  4. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  5. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. 对Spring的IoC和DI最生动的解释

    首先想说说IoC(Inversion of Control,控制倒转).这是spring的核心,贯穿始终.所谓IoC,对于spring框架来说,就是由spring来负责控制对象的生命周期和对象间的关系 ...

  2. ASP代码审计一枚

    <% On Error Resume Next dim name, pass, sql, action set conn = server.CreateObject("ADODB.Co ...

  3. ST3插件——PlainTasks的使用

    今天看到一个有意思的ST3插件,可以进行简单的任务管理. 安装很简单:ctrl + shift + p,输入install回车,再输入plaintasks回车即可. 以下是一些支持的操作,更多的操作请 ...

  4. 分布式环境下Unique ID生成方法

    ID即标示符,在某个搜索域内能唯一标示其中某个对象.在关系型数据库中每个表都需要定义一个主键来唯一标示一条记录.为了方便一般都会使用一个auto_increment属性的整形数做为ID.因为数据库本身 ...

  5. WPF在XAML中Binding使用StringFormat属性

    1. 绑定Currency, 如果没有字符的话, =后面需要先加入{}. 不加的话会出问题. 1 <TextBlock Text="{Binding Amount, StringFor ...

  6. sql 索引 填充因子(转)

    和索引重建最相关的是填充因子.当创建一个新索引,或重建一个存在的索引时,你可以指定一个填充因子,它是在索引创建时索引里的数据页被填充的数量.填充因子设置为100意味着每个索引页100%填满,50%意味 ...

  7. 在线运行Javascript,Jquery,HTML,CSS代码

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" http://www.w3.org/TR/xht ...

  8. [IPSEC PKI]

    PKI: 对称加密 非对称加密(混合加密) 数字签名   理论概述: (1)预备知识 对称加密:加密密钥和揭秘蜜钥是同一个密钥 缺点:不适合在互联网上传输密钥 密钥维护工作量大 n(n-1)/2 : ...

  9. Linux Linux程序练习十二(select实现QQ群聊)

    //头文件--helper.h #ifndef _vzhang #define _vzhang #ifdef __cplusplus extern "C" { #endif #de ...

  10. C语言 文件操作1--二进制文件与文本文件

    //写文件两种方式(文本文件和二进制文件) #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib.h&g ...