AIAIndividual.py

 import numpy as np
import ObjFunction class AIAIndividual: '''
individual of artificial immune algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0
self.concentration = 0 def generate(self):
'''
generate a random chromsome for artificial immune algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)

AIA.py

 import numpy as np
from AIAIndividual import AIAIndividual
import random
import copy
import matplotlib.pyplot as plt class ArtificialImmuneAlgorithm: '''
The class for artificial immune algorithm
''' def __init__(self, sizepop, sizemem, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
params: algorithm required parameters, it is a list which is consisting of [mutation rate, cloneNum]
'''
self.sizepop = sizepop
self.sizemem = sizemem
self.MAXGEN = MAXGEN
self.vardim = vardim
self.bound = bound
self.population = []
self.clonePopulation = []
self.memories = []
self.cloneMemories = []
self.popFitness = np.zeros(self.sizepop)
self.popCloneFitness = np.zeros(
int(self.sizepop * self.sizepop * params[1]))
self.memfitness = np.zero(self.sizemem)
self.memClonefitness = np.zero(
int(self.sizemem * self.sizemem * params[1]))
self.trace = np.zeros((self.MAXGEN, 2))
self.params = params def initialize(self):
'''
initialize the population
'''
for i in xrange(0, self.sizepop):
ind = AIAIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind)
for i in xrange(0, self.sizemem):
ind = AIAIndividual(self.vardim, self.bound)
ind.generate()
self.memories.append(ind) def evaluatePopulation(self, flag):
'''
evaluation of the population fitnesses
'''
if flag == 1:
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.popFitness[i] = self.population[i].fitness
else:
for i in xrange(0, self.sizemem):
self.memories[i].calculateFitness()
self.memfitness[i] = self.memories[i].fitness def evaluateClone(self, flag):
'''
evaluation of the clone fitnesses
'''
if flag == 1:
for i in xrange(0, self.sizepop):
self.clonePopulation[i].calculateFitness()
self.popCloneFitness[i] = self.clonePopulation[i].fitness
else:
for i in xrange(0, self.sizemem):
self.cloneMemories[i].calculateFitness()
self.memClonefitness[i] = self.cloneMemories[i].fitness def solve(self):
'''
evolution process of artificial immune algorithm
'''
self.t = 0
self.initialize()
self.best = AIAIndividual(self.vardim, self.bound)
while (self.t < self.MAXGEN):
# evolution of population
self.cloneOperation(1)
self.mutationOperation(1)
self.evaluatePopulation(1)
self.selectionOperation(1) # evolution of memories
self.cloneOperation(2)
self.mutationOperation(2)
self.evaluatePopulation()
self.selectionOperation(2) best = np.max(self.popFitness)
bestIndex = np.argmax(self.popFitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.popFitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
self.t += 1 print("Optimal function value is: %f; " %
self.trace[self.t - 1, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def cloneOperation(self, individuals):
'''
clone operation for alforithm immune algorithm
'''
newpop = []
sizeInds = len(individuals)
for i in xrange(0, sizeInds):
for j in xrange(0, int(self.params[1] * sizeInds)):
newpop.append(copy.deepcopy(individuals[i]))
return newpop def selectionOperation(self, flag):
'''
selection operation for artificial immune algorithm
'''
if flag == 1:
sortedIdx = np.argsort(-self.clonefit)
for i in xrange(0, int(self.sizepop*self.sizepop*self.params[1]):
tmpInd = individuals[sortedIdx[i]]
if tmpInd.fitness > self.population[i].fitness:
self.population[i] = tmpInd
self.popFitness[i] = tmpInd.fitness
else:
pass
newpop = []
sizeInds = len(individuals)
fitness = np.zeros(sizeInds)
for i in xrange(0, sizeInds):
fitness[i] = individuals[i].fitness
sortedIdx = np.argsort(-fitness)
for i in xrange(0, sizeInds):
tmpInd = individuals[sortedIdx[i]]
if tmpInd.fitness > self.population[i].fitness:
self.population[i] = tmpInd
self.popFitness[i] = tmpInd.fitness def mutationOperation(self, individuals):
'''
mutation operation for artificial immune algorithm
'''
newpop = []
sizeInds = len(individuals)
for i in xrange(0, sizeInds):
newpop.append(copy.deepcopy(individuals[i]))
r = random.random()
if r < self.params[0]:
mutatePos = random.randint(0, self.vardim - 1)
theta = random.random()
if theta > 0.5:
newpop[i].chrom[mutatePos] = newpop[i].chrom[
mutatePos] - (newpop[i].chrom[mutatePos] - self.bound[0, mutatePos]) * (1 - random.random() ** (1 - self.t / self.MAXGEN))
else:
newpop[i].chrom[mutatePos] = newpop[i].chrom[
mutatePos] + (self.bound[1, mutatePos] - newpop[i].chrom[mutatePos]) * (1 - random.random() ** (1 - self.t / self.MAXGEN))
for k in xrange(0, self.vardim):
if newpop.chrom[mutatePos] < self.bound[0, mutatePos]:
newpop.chrom[mutatePos] = self.bound[0, mutatePos]
if newpop.chrom[mutatePos] > self.bound[1, mutatePos]:
newpop.chrom[mutatePos] = self.bound[1, mutatePos]
newpop.calculateFitness()
return newpop def printResult(self):
'''
plot the result of the artificial immune algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Artificial immune algorithm for function optimization")
plt.legend()
plt.show()

运行程序:

 if __name__ == "__main__":

     bound = np.tile([[-600], [600]], 25)
aia = AIA(100, 25, bound, 100, [0.9, 0.1])
aia.solve()

ObjFunction见简单遗传算法-python实现

人工免疫算法-python实现的更多相关文章

  1. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  2. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  3. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  4. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  5. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. 数字对 (长乐一中模拟赛day2T2)

    2.数字对 [题目描述] 小H是个善于思考的学生,现在她又在思考一个有关序列的问题. 她的面前浮现出一个长度为n的序列{ai},她想找出一段区间[L, R](1 <= L <= R < ...

  2. ofbiz的部署及安装问题解决办法

    ofbiz是apache下的顶级开源项目之一,非常强大说下正常流程及解决办法. 开发环境:本人开发环境是win7系统 准备: 1.如果使用的是git,从https://github.com/apach ...

  3. 常用类库——StringBuffer类

    掌握目标: 1,掌握StringBuffer与String的区别. 2,掌握StringBuffer常用方法. 3,掌握StringBuffer实际应用. 1,认识StringBuffer. Stri ...

  4. 分布式环境下Unique ID生成方法

    ID即标示符,在某个搜索域内能唯一标示其中某个对象.在关系型数据库中每个表都需要定义一个主键来唯一标示一条记录.为了方便一般都会使用一个auto_increment属性的整形数做为ID.因为数据库本身 ...

  5. IPAdr.exe注册机[PY]

    算法还原: a =raw_input('enter the string: \n') num =len(a) All_c=0 for i in range(0,num,1): b =ord(a[i]) ...

  6. 关于浏览器cookie的那些事儿

    昨天接到一个小需求,就是在ipad上访问某页面,页面顶部出现一个下载客户端的提示,点击关闭按钮后,提示信息消失,信息存入cookie,在cookie未过期之前,除非用户自己清除浏览器的cookie,否 ...

  7. Linux(10.5-10.11)学习笔记

    3.2程序编码 unix> gcc -01 -o p p1.c p2.c -o用于指定输出(out)文件名. -01,-02 告诉编译器使用第一级或第二级优化 3.2.1机器级代码 机器级编程两 ...

  8. IDEA SSH

    被IDEA各种虐0.0各种配置,没有人教就百度,别人也弄了点,然后整整花了一天,从eclipse转到IDEA真的不容易啊TT

  9. [转载]使用HttpWebRequest进行请求时发生错误:基础连接已关闭,发送时发生错误处理

    转载,原文来自 http://blog.csdn.net/hawksoft/article/details/21776009 最近调试原来的微信模拟登陆时发生了“基础连接已关闭,发送时发生错误”的错误 ...

  10. Bootstrap2和3的区别

    如果你需要兼容IE8甚至是IE7和IE6,那么只能选择Bootstrap2,虽然它自身在IE6的效果也并不完美.     但是倘若你跟随时代的脚步,并且面向的客户也很高端大气上档次地选择只需要兼容高级 ...