Description

Rhason Cheung had a simple problem, and asked Teacher Mai for help. But Teacher Mai thought this problem was too simple, sometimes naive. So she ask you for help.

Teacher Mai has m functions f1,f2,...,fm:{1,2,...,n}→{1,2,...,n}(that means for all x∈{1,2,...,n},f(x)∈{1,2,...,n}.
But Rhason only knows some of these functions, and others are unknown.
She wants to know how many different function series f1,f2,...,fm there are that for every i(i≤1≤n),f1(f2(...(fm(i))...))=i. Two function series f1,f2,...,fm and g1,g2,...,gm are considered different if and only if there exist i(1≤i≤m), j(1≤j≤n),fi(j)≠gi(j)

Input

For each test case, the first lines contains two numbers n,m(1≤n,m≤100)The following are m lines. In i-th line, there is one number -1;or n space-separated numbers.

If there is only one number -1, the function fi is unknown. Otherwise the j-th number in the i-th line means fi(j)

Output

For each test case print the answer modulo 109+7.

Sample Input

3 3
1 2 3
-1
3 2 1
 

Sample Output

1

Hint

The order in the function series is determined. What she can do is to assign the values to the unknown functions. 

题意:

求满足f1(f2(...(fm(i))...))=i的未知的函数有多少种可能。

分析:

答案是(n!)^(m-1)再mod 109+7,m为-1的个数,因为m个不确定的函数,其中的m-1个固定了,那么还有一个也就固定了。每个不确定的都有n!种方案。

如果m为0,则有0种或者1种方案。也就是要看当前的一层一层能否推到f1(f2(...(fm(i))...))=i。

要注意:当某个f里1..n没有全部出现时,即有重复数字时,答案是0。

这题说是too simple,然而好多坑啊!样例只有一组数据,但是实际上可能有多组数据,除此,要注意每次处理新的一组时,哪些变量要清零,还有这题要用long long,n阶乘可以在一开始初始化。

代码:

#include<stdio.h>
#define M 1000000007LL
#define ll long long
#define N 105
#define F(a,b,c) for(int a=b;a<=c;a++)
ll n,m,d,f[N][N],y[N],jc[N]={,},ans;
int main()
{
F(i,,)jc[i]=jc[i-]*i%M;//初始化阶乘
while(~scanf("%lld%lld",&n,&m))
{
d=;ans=;//初始化
F(i,,m)
{
scanf("%lld",&f[i][]);
if(f[i][]==-)d++;
else F(j,,n)
{
scanf("%lld",&f[i][j]);
if(ans)F(k,,j-)
if(f[i][j]==f[i][k])ans=;
}
}
if(ans)
{
if(d==)
{
F(i,,n)y[i]=i;
for(int i=m; i; i--)
F(j,,n)y[j]=f[i][y[j]];//一层层推到f1
F(i,,n&&ans)if(y[i]!=i)ans=;
}
else
F(i,,d-)ans=ans*jc[n]%M;
}
printf("%lld\n",ans);
}
return ;
}

【HDU 5399】Too Simple的更多相关文章

  1. 【HDOJ 5399】Too Simple

    pid=5399">[HDOJ 5399]Too Simple 函数映射问题 给出m函数 里面有0~m个函数未知(-1) 问要求最后1~n分别相应仍映射1~n 有几种函数写法(已给定的 ...

  2. 【hdu 2486】A simple stone game

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s) ...

  3. 【HDU 1757】 A Simple Math Problem

    题 Description Lele now is thinking about a simple function f(x). If x < 10 f(x) = x. If x >= 1 ...

  4. 【数位dp】【HDU 3555】【HDU 2089】数位DP入门题

    [HDU  3555]原题直通车: 代码: // 31MS 900K 909 B G++ #include<iostream> #include<cstdio> #includ ...

  5. 一本通1548【例 2】A Simple Problem with Integers

    1548:[例 2]A Simple Problem with Integers 题目描述 这是一道模板题. 给定数列 a[1],a[2],…,a[n],你需要依次进行 q 个操作,操作有两类: 1 ...

  6. 【HDU 5647】DZY Loves Connecting(树DP)

    pid=5647">[HDU 5647]DZY Loves Connecting(树DP) DZY Loves Connecting Time Limit: 4000/2000 MS ...

  7. -【线性基】【BZOJ 2460】【BZOJ 2115】【HDU 3949】

    [把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最 ...

  8. 【HDU 2196】 Computer(树的直径)

    [HDU 2196] Computer(树的直径) 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 这题可以用树形DP解决,自然也可以用最直观的方法解 ...

  9. 【HDU 2196】 Computer (树形DP)

    [HDU 2196] Computer 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 刘汝佳<算法竞赛入门经典>P282页留下了这个问题 ...

随机推荐

  1. 2014 Super Training #4 G What day is that day? --两种方法

    原题: ZOJ 3785 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3785 题意:当天是星期六,问经过1^1+2^2+ ...

  2. HDU 2487 Ugly Windows

    递归求解,代码不太好看,是2013年7月写的 代码: #include<stdio.h> #include<iostream> #include<string.h> ...

  3. ehcache 一二事 - ssm 中ehcashe的简单配置应用

    Ehcache是一个开源Java分布式缓存.可以配合mybatis来使用   首先,在资源文件夹中新建ehcache.xml   内容如下: <?xml version="1.0&qu ...

  4. Vernam密码

    Vernam加密法也称一次一密(One-Time-Pad),用随机的非重复的字符集合作为输出密文.这里最重要的是,一旦使用了变换的输入密文,就不再在任何其他消息中使用这个输入密文(因此是一次性的).输 ...

  5. sqlzoo.net刷题

    只发后面提升题目的题解,前面的太简单,写下来也没有意义 12.查找尤金•奧尼爾EUGENE O'NEILL得獎的所有細節 Find all details of the prize won by EU ...

  6. 【C#】【MySQL】C# 查询数据库语句@Row:=@Row+1

    如何实现数据库查询产生虚拟的一列序号的功能: ) )AS r; 该语句可以实现产生虚拟的一列数据在MySQL中运行没有问题. 但是在C#里面调用去出现了错误"Parameter '@ROW' ...

  7. DWM 窗体玻璃效果实现

    我一直盼望着 Windows 新版本的发布.令人感兴趣的事情莫过于浏览 MSDN® 和 SDK 文档,查找一些可以利用和依赖的最新创新,然后让朋友和同事以及您的老板(如果幸运的话)大开眼界.Windo ...

  8. [py]os.walk爬目录&sys.argv灵活获取参数

    1, 遍历目录 os.walk('/tmp') os.next()   2,sys.argv ######################################## py@lanny:~/t ...

  9. MTK android 工程中如何修改照片详细信息中机型名

    每一个项目的机型名都不相同,因此拍出来的照片需要更改详细信息中的机型名. 那么,具体在哪里修改照片详细信息机型名呢 路径信息:/ALPS.JB3.TDD.MP.V2_TD_xxx/mediatek/c ...

  10. HashMap 中的 entrySet()使用方法 2016.12.28

    package map; import java.util.HashMap; import java.util.Iterator; import java.util.Map.Entry; import ...