[如何正确使用「K均值聚类」?

1、k均值聚类模型

给定样本,每个样本都是m为特征向量,模型目标是将n个样本分到k个不停的类或簇中,每个样本到其所属类的中心的距离最小,每个样本只能属于一个类。用C表示划分,他是一个多对一的函数,k均值聚类就是一个从样本到类的函数。

2、k均值聚类策略

k均值聚类的策略是通过损失函数最小化选取最优的划分或函数

首先,计算样本之间的距离,这里选欧氏距离平方。



然后定义样本与其所属类的中心之间的距离的总和为损失函数



其中为第l个类的均值或中心



,是指示函数,取值1或0.

k均值聚类就是求解最优化问题:



3、k均值聚类算法

k均值聚类的算法是一个迭代过程,

首先:

对于给定中心值,求划分C,是目标函数极小化:



即,类中心确定的情况下,将样本分到一个类中,使样本和其所属类的中心之间的距离总和最小。

然后:

对于给定的划分C,再求各个类的中心,是目标函数极小化。

即,划分C确定的情况下,使样本和其所属类的中心之间的距离总和最小。求解结果,对于每个包含nl个样本的类Gi,更新其均值ml:



重复以上两个步骤,知道分化不在改变。

from myUtil import *

def kMeans(dataSet, k):
m = shape(dataSet)[0] # 返回矩阵的行数 # 本算法核心数据结构:行数与数据集相同
# 列1:数据集对应的聚类中心,列2:数据集行向量到聚类中心的距离
ClustDist = mat(zeros((m, 2))) # 随机生成一个数据集的聚类中心:本例为4*2的矩阵
# 确保该聚类中心位于min(dataSet[:,j]),max(dataSet[:,j])之间
clustercents = randCenters(dataSet, k) # 随机生成聚类中心 flag = True # 初始化标志位,迭代开始
counter = [] # 计数器 # 循环迭代直至终止条件为False
# 算法停止的条件:dataSet的所有向量都能找到某个聚类中心,到此中心的距离均小于其他k-1个中心的距离
while flag:
flag = False # 预置标志位为False # ---- 1. 构建ClustDist:遍历DataSet数据集,计算DataSet每行与聚类的最小欧式距离 ----#
# 将此结果赋值ClustDist=[minIndex,minDist]
for i in xrange(m): # 遍历k个聚类中心,获取最短距离
distlist = [distEclud(clustercents[j, :], dataSet[i, :]) for j in range(k)]
minDist = min(distlist)
minIndex = distlist.index(minDist) if ClustDist[i, 0] != minIndex: # 找到了一个新聚类中心
flag = True # 重置标志位为True,继续迭代 # 将minIndex和minDist**2赋予ClustDist第i行
# 含义是数据集i行对应的聚类中心为minIndex,最短距离为minDist
ClustDist[i, :] = minIndex, minDist # ---- 2.如果执行到此处,说明还有需要更新clustercents值: 循环变量为cent(0~k-1)----#
# 1.用聚类中心cent切分为ClustDist,返回dataSet的行索引
# 并以此从dataSet中提取对应的行向量构成新的ptsInClust
# 计算分隔后ptsInClust各列的均值,以此更新聚类中心clustercents的各项值
for cent in xrange(k):
# 从ClustDist的第一列中筛选出等于cent值的行下标
dInx = nonzero(ClustDist[:, 0].A == cent)[0]
# 从dataSet中提取行下标==dInx构成一个新数据集
ptsInClust = dataSet[dInx]
# 计算ptsInClust各列的均值: mean(ptsInClust, axis=0):axis=0 按列计算
clustercents[cent, :] = mean(ptsInClust, axis=0)
return clustercents, ClustDist

参考:

https://jakevdp.github.io/PythonDataScienceHandbook

https://www.cnblogs.com/eczhou/p/7860424.html

统计学习方法14.3

100天搞定机器学习|day44 k均值聚类数学推导与python实现的更多相关文章

  1. 100天搞定机器学习|Day8 逻辑回归的数学原理

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  2. 100天搞定机器学习|day54 聚类系列:层次聚类原理及案例

    几张GIF理解K-均值聚类原理 k均值聚类数学推导与python实现 前文说了k均值聚类,他是基于中心的聚类方法,通过迭代将样本分到k个类中,使每个样本与其所属类的中心或均值最近. 今天我们看一下无监 ...

  3. 100天搞定机器学习|Day11 实现KNN

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  4. 100天搞定机器学习|Day16 通过内核技巧实现SVM

    前情回顾 机器学习100天|Day1数据预处理100天搞定机器学习|Day2简单线性回归分析100天搞定机器学习|Day3多元线性回归100天搞定机器学习|Day4-6 逻辑回归100天搞定机器学习| ...

  5. 100天搞定机器学习|Day22 机器为什么能学习?

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  6. 100天搞定机器学习|Day9-12 支持向量机

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  7. 100天搞定机器学习|Day17-18 神奇的逻辑回归

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  8. 100天搞定机器学习|Day19-20 加州理工学院公开课:机器学习与数据挖掘

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  9. 100天搞定机器学习|Day21 Beautiful Soup

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

随机推荐

  1. sql注入------基于时间延迟benchmark函数注入脚本

    #author:windy_2import requests urlx = 'http://127.0.0.1/?id= 1 and if((substr((select database()),' ...

  2. NPOI 日期类型的判断

    NPOI目前我用到有两套类,一套是为了读写XLS:一套是读写XLSX 在读取文件时大都会判断单元格类型,方式大同小异,只有日期类型不同. 默认日期类型的单元格在NPOI都认为是数值类型(CellTyp ...

  3. Apache和Spring提供的StopWatch执行时间监视器

    相关阅读 [小家java]java5新特性(简述十大新特性) 重要一跃 [小家java]java6新特性(简述十大新特性) 鸡肋升级 [小家java]java7新特性(简述八大新特性) 不温不火 [小 ...

  4. jsp数据交互(二).1

    对象的作用域:   JSP中提供了四种作用域,分别是page作用域,request作用域,session作用域和application作用域. page作用域: page作用域指单一JSP页面的范围, ...

  5. GStreamer基础教程06 - 获取媒体信息

    摘要 在常见的媒体文件中,通常包含一些数据(例如:歌手,专辑,编码类型等),用于描述媒体文件.通常称这些数据为元数据(Metadata:data that provides information a ...

  6. 【WPF】大量Canvas转换为本地图片遇到的问题

    原文地址:https://www.cnblogs.com/younShieh   项目中遇到一个难题,需要将上百个没有显示出来的Canvas存储为图片保存在本地. 查阅资料后(百度一下)后得知保存为本 ...

  7. 【iOS】iOS viewDidLoad 方法名问题

    这两天在调试一个项目,跳转到一个页面的时候总是不显示标题栏(当然也没有标题栏的返回按钮),搞了好久,今天总算找到了问题:之前的开发人员竟然把 viewDidLoad 这个基本的方法名写成了 views ...

  8. Linux 文件系统相关的基本概念

    本文介绍 Linux 文件系统相关的基本概念. 硬盘的物理组成 盘片硬盘其实是由单个或多个圆形的盘片组成的,按照盘片能够容纳的数据量,分为单盘(一个硬盘里面只有一个盘片)或多盘(一个硬盘里面有多个盘片 ...

  9. Shiro权限框架与SpringMVC集成

    1.Shiro整合SpringMVC 我们学习Shiro框架肯定是要应用到Web项目上的,所以我们需要整合Shiro和SpringMVC 整合步骤: 第一步:SpringMVC框架的配置 spring ...

  10. Extjs的使用总结笔记

    一:Extjs自带验证 1.alpha //只能输入字母,无法输入其他(如数字,特殊符号等) 2.alphanum//只能输入字母和数字,无法输入其他 3.email//email验证,要求的格式是& ...