[如何正确使用「K均值聚类」?

1、k均值聚类模型

给定样本,每个样本都是m为特征向量,模型目标是将n个样本分到k个不停的类或簇中,每个样本到其所属类的中心的距离最小,每个样本只能属于一个类。用C表示划分,他是一个多对一的函数,k均值聚类就是一个从样本到类的函数。

2、k均值聚类策略

k均值聚类的策略是通过损失函数最小化选取最优的划分或函数

首先,计算样本之间的距离,这里选欧氏距离平方。



然后定义样本与其所属类的中心之间的距离的总和为损失函数



其中为第l个类的均值或中心



,是指示函数,取值1或0.

k均值聚类就是求解最优化问题:



3、k均值聚类算法

k均值聚类的算法是一个迭代过程,

首先:

对于给定中心值,求划分C,是目标函数极小化:



即,类中心确定的情况下,将样本分到一个类中,使样本和其所属类的中心之间的距离总和最小。

然后:

对于给定的划分C,再求各个类的中心,是目标函数极小化。

即,划分C确定的情况下,使样本和其所属类的中心之间的距离总和最小。求解结果,对于每个包含nl个样本的类Gi,更新其均值ml:



重复以上两个步骤,知道分化不在改变。

from myUtil import *

def kMeans(dataSet, k):
m = shape(dataSet)[0] # 返回矩阵的行数 # 本算法核心数据结构:行数与数据集相同
# 列1:数据集对应的聚类中心,列2:数据集行向量到聚类中心的距离
ClustDist = mat(zeros((m, 2))) # 随机生成一个数据集的聚类中心:本例为4*2的矩阵
# 确保该聚类中心位于min(dataSet[:,j]),max(dataSet[:,j])之间
clustercents = randCenters(dataSet, k) # 随机生成聚类中心 flag = True # 初始化标志位,迭代开始
counter = [] # 计数器 # 循环迭代直至终止条件为False
# 算法停止的条件:dataSet的所有向量都能找到某个聚类中心,到此中心的距离均小于其他k-1个中心的距离
while flag:
flag = False # 预置标志位为False # ---- 1. 构建ClustDist:遍历DataSet数据集,计算DataSet每行与聚类的最小欧式距离 ----#
# 将此结果赋值ClustDist=[minIndex,minDist]
for i in xrange(m): # 遍历k个聚类中心,获取最短距离
distlist = [distEclud(clustercents[j, :], dataSet[i, :]) for j in range(k)]
minDist = min(distlist)
minIndex = distlist.index(minDist) if ClustDist[i, 0] != minIndex: # 找到了一个新聚类中心
flag = True # 重置标志位为True,继续迭代 # 将minIndex和minDist**2赋予ClustDist第i行
# 含义是数据集i行对应的聚类中心为minIndex,最短距离为minDist
ClustDist[i, :] = minIndex, minDist # ---- 2.如果执行到此处,说明还有需要更新clustercents值: 循环变量为cent(0~k-1)----#
# 1.用聚类中心cent切分为ClustDist,返回dataSet的行索引
# 并以此从dataSet中提取对应的行向量构成新的ptsInClust
# 计算分隔后ptsInClust各列的均值,以此更新聚类中心clustercents的各项值
for cent in xrange(k):
# 从ClustDist的第一列中筛选出等于cent值的行下标
dInx = nonzero(ClustDist[:, 0].A == cent)[0]
# 从dataSet中提取行下标==dInx构成一个新数据集
ptsInClust = dataSet[dInx]
# 计算ptsInClust各列的均值: mean(ptsInClust, axis=0):axis=0 按列计算
clustercents[cent, :] = mean(ptsInClust, axis=0)
return clustercents, ClustDist

参考:

https://jakevdp.github.io/PythonDataScienceHandbook

https://www.cnblogs.com/eczhou/p/7860424.html

统计学习方法14.3

100天搞定机器学习|day44 k均值聚类数学推导与python实现的更多相关文章

  1. 100天搞定机器学习|Day8 逻辑回归的数学原理

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  2. 100天搞定机器学习|day54 聚类系列:层次聚类原理及案例

    几张GIF理解K-均值聚类原理 k均值聚类数学推导与python实现 前文说了k均值聚类,他是基于中心的聚类方法,通过迭代将样本分到k个类中,使每个样本与其所属类的中心或均值最近. 今天我们看一下无监 ...

  3. 100天搞定机器学习|Day11 实现KNN

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  4. 100天搞定机器学习|Day16 通过内核技巧实现SVM

    前情回顾 机器学习100天|Day1数据预处理100天搞定机器学习|Day2简单线性回归分析100天搞定机器学习|Day3多元线性回归100天搞定机器学习|Day4-6 逻辑回归100天搞定机器学习| ...

  5. 100天搞定机器学习|Day22 机器为什么能学习?

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  6. 100天搞定机器学习|Day9-12 支持向量机

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  7. 100天搞定机器学习|Day17-18 神奇的逻辑回归

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  8. 100天搞定机器学习|Day19-20 加州理工学院公开课:机器学习与数据挖掘

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  9. 100天搞定机器学习|Day21 Beautiful Soup

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

随机推荐

  1. 洛谷P2472 [SCOI2007]蜥蜴 题解

    题目链接: https://www.luogu.org/problemnew/show/P2472 分析: 这道题用最大流解决. 首先构建模型. 一根柱子可以跳入和跳出,于是拆成两个点:入点和出点. ...

  2. 「PowerBI」分析服务多维数据结构重回关系数据库的一大绝招

    在过往Excel催化剂定位的轻量级Excel+PowerBIDesktop的解决方案中,已经做过了近乎完美的PowerBIDesktop数据模型数据导出到Excel工作表的应用,这也是个人版数据应用的 ...

  3. C#2.0新增功能02 泛型

    连载目录    [已更新最新开发文章,点击查看详细] C# 语言和公共语言运行时 (CLR) 的 2.0 版本中添加了泛型. 泛型将类型参数的概念引入 .NET Framework,这样就可以设计具有 ...

  4. Cesium 学习(一)环境搭建

    网上已有很多文章来教我们搭建Cesium的环境,我也没有必要再写一次:下面是我参照的文章的地址: 1.https://www.cnblogs.com/huqi-code/p/8287403.html  ...

  5. PHP对接口执行效率慢的优化

    PHP对接口执行效率慢的优化 PHP对接口执行效率慢的优化 造成执行效率低的原因可以由很多方面找原因 从代码层面,代码质量低,执行效率也会有很大影响的. 从硬件方面,服务器配置低,服务器配置是基础,这 ...

  6. PHP中的$_POST变量

    定义 在 PHP 中,预定义的 $_POST 变量用于收集来自 method="post" 的表单中的值. $_POST 变量 预定义的 $_POST 变量用于收集来自method ...

  7. 给定一个IP地址,转化为二进制32位,再转化为十进制,写出一个方法让其十进制转为IP地址

    十进制是已知的数值 第一种方法: <script type="text/javascript"> var num=2148140545; var str=num.toS ...

  8. 私有网络(VPC)概述

    1 什么是私有网络(VPC) 私有网络是一块可用户自定义的网络空间,您可以在私有网络内部署云主机.负载均衡.数据库.Nosql快存储等云服务资源.您可自由划分网段.制定路由策略.私有网络可以配置公网网 ...

  9. Calico 网络通信原理揭秘

    Calico 是一个纯三层的数据中心网络方案,而且无缝集成像 OpenStack 这种 Iaas 云架构,能够提供可控的 VM.容器.裸机之间的 IP 通信.为什么说它是纯三层呢?因为所有的数据包都是 ...

  10. javaweb入门----servlet简介

    servlet 上文已经了解了web服务器和http协议是怎么回事儿,并且也了解了浏览器与服务器之间的联系,现在要介绍一下服务器是如何处理来自客户端的请求的,这就是servlet. servlet:J ...