三步理解--门控循环单元(GRU),TensorFlow实现
1. 什么是GRU
在循环神经⽹络中的梯度计算⽅法中,我们发现,当时间步数较⼤或者时间步较小时,循环神经⽹络的梯度较容易出现衰减或爆炸。虽然裁剪梯度可以应对梯度爆炸,但⽆法解决梯度衰减的问题。通常由于这个原因,循环神经⽹络在实际中较难捕捉时间序列中时间步距离较⼤的依赖关系。
门控循环神经⽹络(gated recurrent neural network)的提出,正是为了更好地捕捉时间序列中时间步距离较⼤的依赖关系。它通过可以学习的⻔来控制信息的流动。其中,门控循环单元(gatedrecurrent unit,GRU)是⼀种常⽤的门控循环神经⽹络。
2. ⻔控循环单元
2.1 重置门和更新门
GRU它引⼊了重置⻔(reset gate)和更新⻔(update gate)的概念,从而修改了循环神经⽹络中隐藏状态的计算⽅式。
门控循环单元中的重置⻔和更新⻔的输⼊均为当前时间步输⼊ \(X_t\) 与上⼀时间步隐藏状态\(H_{t-1}\),输出由激活函数为sigmoid函数的全连接层计算得到。 如下图所示:
具体来说,假设隐藏单元个数为 h,给定时间步 t 的小批量输⼊ \(X_t\in_{}\mathbb{R}^{n*d}\)(样本数为n,输⼊个数为d)和上⼀时间步隐藏状态 \(H_{t-1}\in_{}\mathbb{R}^{n*h}\)。重置⻔ \(H_t\in_{}\mathbb{R}^{n*h}\) 和更新⻔ \(Z_t\in_{}\mathbb{R}^{n*h}\) 的计算如下:
\[R_t=\sigma(X_tW_{xr}+H_{t-1}W_{hr}+b_r)\]
\[Z_t=\sigma(X_tW_{xz}+H_{t-1}W_{hz}+b_z)\]
sigmoid函数可以将元素的值变换到0和1之间。因此,重置⻔ \(R_t\) 和更新⻔ \(Z_t\) 中每个元素的值域都是[0, 1]。
2.2 候选隐藏状态
接下来,⻔控循环单元将计算候选隐藏状态来辅助稍后的隐藏状态计算。我们将当前时间步重置⻔的输出与上⼀时间步隐藏状态做按元素乘法(符号为⊙)。如果重置⻔中元素值接近0,那么意味着重置对应隐藏状态元素为0,即丢弃上⼀时间步的隐藏状态。如果元素值接近1,那么表⽰保留上⼀时间步的隐藏状态。然后,将按元素乘法的结果与当前时间步的输⼊连结,再通过含激活函数tanh的全连接层计算出候选隐藏状态,其所有元素的值域为[-1,1]。
具体来说,时间步 t 的候选隐藏状态 \(\tilde{H}\in_{}\mathbb{R}^{n*h}\) 的计算为:
\[\tilde{H}_t=tanh(X_tW_{xh}+(R_t⊙H_{t-1})W_{hh}+b_h)\]
从上⾯这个公式可以看出,重置⻔控制了上⼀时间步的隐藏状态如何流⼊当前时间步的候选隐藏状态。而上⼀时间步的隐藏状态可能包含了时间序列截⾄上⼀时间步的全部历史信息。因此,重置⻔可以⽤来丢弃与预测⽆关的历史信息。
2.3 隐藏状态
最后,时间步t的隐藏状态 \(H_t\in_{}\mathbb{R}^{n*h}\) 的计算使⽤当前时间步的更新⻔\(Z_t\)来对上⼀时间步的隐藏状态 \(H_{t-1}\) 和当前时间步的候选隐藏状态 \(\tilde{H}_t\) 做组合:
值得注意的是,更新⻔可以控制隐藏状态应该如何被包含当前时间步信息的候选隐藏状态所更新,如上图所⽰。假设更新⻔在时间步 \(t^{′}到t(t^{′}<t)\) 之间⼀直近似1。那么,在时间步 \(t^{′}到t\) 间的输⼊信息⼏乎没有流⼊时间步 t 的隐藏状态\(H_t\)实际上,这可以看作是较早时刻的隐藏状态 \(H_{t^{′}-1}\) 直通过时间保存并传递⾄当前时间步 t。这个设计可以应对循环神经⽹络中的梯度衰减问题,并更好地捕捉时间序列中时间步距离较⼤的依赖关系。
我们对⻔控循环单元的设计稍作总结:
- 重置⻔有助于捕捉时间序列⾥短期的依赖关系;
- 更新⻔有助于捕捉时间序列⾥⻓期的依赖关系。
3. 代码实现GRU
4. 参考文献
作者:@mantchs
GitHub:https://github.com/NLP-LOVE/ML-NLP
欢迎大家加入讨论!共同完善此项目!群号:【541954936】
三步理解--门控循环单元(GRU),TensorFlow实现的更多相关文章
- 门控循环单元(GRU)与 LSTM 的区别
29 November 2019 14:48 GRU is a popular variant of LSTM which replaces the forget gate and the input ...
- 序列模型(4)----门控循环单元(GRU)
一.GRU 其中, rt表示重置门,zt表示更新门. 重置门决定是否将之前的状态忘记.(作用相当于合并了 LSTM 中的遗忘门和传入门) 当rt趋于0的时候,前一个时刻的状态信息ht−1会被忘掉,隐藏 ...
- GRU门控制循环单元【转载】
转自:https://www.infoq.cn/article/sliced-recurrent-neural-networks 1.门控循环单元 GRU GRU 由 reset gate r 和 u ...
- [DeeplearningAI笔记]序列模型1.7-1.9RNN对新序列采样/GRU门控循环神经网络
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.7对新序列采样 基于词汇进行采样模型 在训练完一个模型之后你想要知道模型学到了什么,一种非正式的方法就是进行一次新序列采 ...
- 十 | 门控循环神经网络LSTM与GRU(附python演练)
欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 门控循环神经网络简介 长短期记忆网络(LSTM) 门控制循环单元(GRU) ...
- Retrofit三步理解之中的一个 ------------------ Retrofit的简单使用总结
概念: Retrofit一開始看起来使用比較麻烦是由于它和其它网络请求框架不同的是它是通过注解和interface来进行网络请求,而且须要对返回数据进行特殊处理才干使用. 1. 简单使用,请求返回St ...
- 技能|三次简化一张图:一招理解LSTM/GRU门控机制
作者 | 张皓 引言 RNN是深度学习中用于处理时序数据的关键技术, 目前已在自然语言处理, 语音识别, 视频识别等领域取得重要突破, 然而梯度消失现象制约着RNN的实际应用.LSTM和GRU是两种目 ...
- VC控件自绘制三步曲
http://blog.csdn.net/lijie45655/article/details/6362441 实现自定义绘制的三步曲 既然您已经了解了绘制控件可用的各种选项(包括使用自定义绘制的好处 ...
- 太深了,梯度传不下去,于是有了highway。 干脆连highway的参数都不要,直接变残差,于是有了ResNet。 强行稳定参数的均值和方差,于是有了BatchNorm。RNN梯度不稳定,于是加几个通路和门控,于是有了LSTM。 LSTM简化一下,有了GRU。
请简述神经网络的发展史sigmoid会饱和,造成梯度消失.于是有了ReLU.ReLU负半轴是死区,造成梯度变0.于是有了LeakyReLU,PReLU.强调梯度和权值分布的稳定性,由此有了ELU,以及 ...
随机推荐
- java接口自动化(一) - 接口自动化测试整体认知 - 开山篇(超详解)
简介 了解什么是接口和为什么要做接口测试.并且知道接口自动化测试应该学习哪些技术以及接口自动化测试的落地过程.其实这些基本上在python接口自动化的文章中已经详细的介绍过了,不清楚的可以过去看看.了 ...
- ~~Python解释器安装教程及环境变量配置~~
进击のpython Python解释器安装教程以及环境变量配置 对于一个程序员来说,能够自己配置python解释器是最基础的技能 那么问题来了,现在市面上有两种Python版本 Python 2.x ...
- android_sdcard读写(一)
现在的android手机其实就是一个小小的掌上电脑,平时电脑有的硬件它估计也有了.这次本人研究下了其中充当手机硬盘的角色,就是sdcard.这是一个保存应用程序的好地方. 老规矩,上代码,学习代码才是 ...
- 20131207-ADO.NET-第十六天
[1]快捷键 工具箱:ctrl+w+x 首字母定位控件范围 属性:F4 或ctrl+w+p Tab跳转 ,home 与end也有效 [2]连接字符串 string str = "Data S ...
- 云开发新能力,支持 HTTP 调用 API
今天来上班打开电脑,总感觉微信开发文档哪里有点不太一样,研究了半天原来是云开发又多了神级功能--HTTP API! HTTP API是什么?简单来说就是通过云开发HTTP API,可以不需要通过微信小 ...
- sizeof()和lstrlen()和strlen()区别
strlen()是返回字符串的字节长度, lstrlen()是返回字符串的字符长度. 也就是说第二个函数可能和第一个函数结果一样,如果字符串中字符单位都是单字节的话. 一般来说主要 ...
- .NET Core CSharp初级篇 1-5 接口、枚举、抽象
.NET Core CSharp初级篇 1-5 本节内容类的接口.枚举.抽象 简介 问题 如果你需要表示星期或者是某些状态,使用字符串或者数字是否不直观? 你是否发现,无论何种电脑,它的USB口的设计 ...
- 「Sqlserver」数据分析师有理由爱Sqlserver之二-像使用Excel一般地使用Sqlserver
大家一谈数据库,就觉得非常高深莫测,深不见底,非凡人敢去触摸.但Excel的话,没人敢说自己不会使用吧(相反一大堆人的简历上写着精通OFFICE所有软件套件).换作其他非微软厂商的数据库,的确很容易产 ...
- 个人用户永久免费,可自动升级版Excel插件,使用VSTO开发,Excel催化剂安装过程详解及安装失败解决方法
因Excel催化剂用了VSTO的开发技术,并且为了最好的用户体验,用了Clickonce的布署方式(无需人工干预自动更新,让用户使用如浏览器访问网站一般,永远是最新的内容和功能).对安装过程有一定的难 ...
- Excel催化剂开源第12波-VSTO开发遍历功能区所有菜单按钮及自定义函数清单
在插件开发过程中,随着功能越来越多,用户找寻功能入口将变得越来越困难,在Excel催化剂 ,将采用遍历所有功能的方式,让用户可以轻松使用简单的查找功能找到想要功能所在位置,查找的范围有:功能按钮的显示 ...