【hdu4045】Machine scheduling(dp+第二类斯特林数)
题意:
从\(n\)个人中选\(r\)个出来,但每两个人的标号不能少于\(k\)。
再将\(r\)个人分为不超过\(m\)个集合。
问有多少种方案。
思路:
直接\(dp\)预处理出从\(n\)个人选\(r\)个的方案,第二类斯特拉数处理分组的情况即可。
/*
* Author: heyuhhh
* Created Time: 2019/12/10 19:14:48
* dp预处理+第二类斯特林数
*/
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <iomanip>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 1005, MOD = 1e9 + 7;
void add(int &x, int y) {
x += y;
if(x >= MOD) x -= MOD;
}
int n, m, r, k;
int dp[N][N];
int s[N][N];
void init() {
s[0][0] = 1;
for(int i = 1; i < N; i++)
for(int j = 1; j <= i; j++)
s[i][j] = (1ll * j * s[i - 1][j] % MOD + s[i - 1][j - 1]) % MOD;
}
void run(){
memset(dp, 0, sizeof(dp));
dp[0][0] = 1;
for(int i = 1; i <= n; i++) {
dp[i][0] = 1;
for(int j = 1; j <= r; j++) {
add(dp[i][j], dp[i - 1][j]);
add(dp[i][j], dp[max(i - k, 0)][j - 1]);
}
}
int tot = dp[n][r];
int sum = 0;
for(int i = 1; i <= m; i++) add(sum, s[r][i]);
int ans = 1ll * tot * sum % MOD;
cout << ans << '\n';
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
init();
while(cin >> n >> r >> k >> m) run();
return 0;
}
【hdu4045】Machine scheduling(dp+第二类斯特林数)的更多相关文章
- BZOJ 2159: Crash 的文明世界(树形dp+第二类斯特林数+组合数)
题意 给定一棵 \(n\) 个点的树和一个常数 \(k\) , 对于每个 \(i\) , 求 \[\displaystyle S(i) = \sum _{j=1} ^ {n} \mathrm{dist ...
- 【bzoj2159】Crash 的文明世界(树形dp+第二类斯特林数)
传送门 题意: 给出一颗\(n\)个结点的树,对于每个结点输出其答案,每个结点的答案为\(ans_x=\sum_{i=1}^ndis(x,i)^k\). 思路: 我们对于每个结点将其答案展开: \[ ...
- HDU4045 Machine scheduling —— 隔板法 + 第二类斯特林数
题目链接:https://vjudge.net/problem/HDU-4045 Machine scheduling Time Limit: 5000/2000 MS (Java/Others) ...
- HDU - 4625 JZPTREE(第二类斯特林数+树DP)
https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...
- bzoj 2159 Crash 的文明世界 && hdu 4625 JZPTREE ——第二类斯特林数+树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 学习材料:https://blog.csdn.net/litble/article/d ...
- P4827 [国家集训队] Crash 的文明世界(第二类斯特林数+树形dp)
传送门 对于点\(u\),所求为\[\sum_{i=1}^ndis(i,u)^k\] 把后面那堆东西化成第二类斯特林数,有\[\sum_{i=1}^n\sum_{j=0}^kS(k,j)\times ...
- Codeforces Round #100 E. New Year Garland (第二类斯特林数+dp)
题目链接: http://codeforces.com/problemset/problem/140/E 题意: 圣诞树上挂彩球,要求从上到下挂\(n\)层彩球.已知有\(m\)种颜色的球,球的数量不 ...
- 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)
题意 题目链接:https://www.luogu.org/problem/P4827 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...
- BZOJ 2159: Crash 的文明世界(组合数学+第二类斯特林数+树形dp)
传送门 解题思路 比较有意思的一道数学题.首先\(n*k^2\)的做法比较好想,就是维护一个\(x^i\)这种东西,然后转移的时候用二项式定理拆开转移.然后有一个比较有意思的结论就是把求\(x^i\) ...
随机推荐
- 分布式图数据库 Nebula Graph 中的集群快照实践
1 概述 1.1 需求背景 图数据库 Nebula Graph 在生产环境中将拥有庞大的数据量和高频率的业务处理,在实际的运行中将不可避免的发生人为的.硬件或业务处理错误的问题,某些严重错误将导致集群 ...
- NET Framework项目移植到NET Core上踩的坑(1)
本文章向大家介绍NET Framework项目移植到NET Core上遇到的一系列坑,主要包括NET Framework项目移植到NET Core上遇到的一系列坑使用实例.应用技巧.基本知识点总结和需 ...
- Java生鲜电商平台-电商会员体系搭建
Java生鲜电商平台-电商会员体系搭建 说明:因为之前一直从事的是B端的生鲜电商方面的产品,对会员体系方面有深刻的理解,今天来聊一聊会员体系的搭建. 明确会员体系的目的 首先我们需要明确的知道,搭建电 ...
- AssemblyBuilder以及Activator双剑合璧
AssemblyBuilder和Activator两个类是DispatchProxy类实现动态代理以及AOP的根本,示例demo可参考 DispatchProxy实现动态代理及AOP .Assembl ...
- DotNet Core中使用RabbitMQ
上一篇随笔记录到RabbitMQ的安装,安装完成,我们就开始使用吧. RabbitMQ简介 AMQP,即Advanced Message Queuing Protocol,高级消息队列协议,是应用层协 ...
- 获取input type=file 的文件内容(纯文本)
一.获取input type=file 的文件内容(纯文本) 1.需求一 通过点击其他事件,来触发 文件选择框(限定格式为 .c 文件),而不是手动鼠标点击触发. [思路:] step1:将 inpu ...
- leetcode题解:回文数
判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: 从左向 ...
- 在windows上用apache+mod_wsgi服务部署django项目
之前一直在本地跑django项目,最近尝试在服务器上部署项目,目前已经成功部署,也花了好多时间,这里跟大家交流一下,希望对像我一样的新手有帮助. 一.配置环境: 1.Python版本3.7 2.服务器 ...
- 1(1).有监督 VS 无监督
对比一 : 有标签 vs 无标签 有监督机器学习又被称为“有老师的学习”,所谓的老师就是标签.有监督的过程为先通过已知的训练样本(如已知输入和对应的输出)来训练,从而得到一个最优模型,再将这个模型应用 ...
- java之递归
什么是递归 递归:指在当前方法内调用自己的这种现象. 递归的分类: 递归分为两种,直接递归和间接递归. 直接递归称为方法自身调用自己. 间接递归可以A方法调用B方法,B方法调用C方法,C方法调用A方法 ...