0. 准备相关表来进行接下来的测试

相关建表语句请看:https://github.com/YangBaohust/my_sql

user1表,取经组
+----+-----------+-----------------+---------------------------------+
| id | user_name | comment | mobile |
+----+-----------+-----------------+---------------------------------+
| 1 | 唐僧 | 旃檀功德佛 | 138245623,021-382349 |
| 2 | 孙悟空 | 斗战胜佛 | 159384292,022-483432,+86-392432 |
| 3 | 猪八戒 | 净坛使者 | 183208243,055-8234234 |
| 4 | 沙僧 | 金身罗汉 | 293842295,098-2383429 |
| 5 | NULL | 白龙马 | 993267899 |
+----+-----------+-----------------+---------------------------------+ user2表,悟空的朋友圈
+----+--------------+-----------+
| id | user_name | comment |
+----+--------------+-----------+
| 1 | 孙悟空 | 美猴王 |
| 2 | 牛魔王 | 牛哥 |
| 3 | 铁扇公主 | 牛夫人 |
| 4 | 菩提老祖 | 葡萄 |
| 5 | NULL | 晶晶 |
+----+--------------+-----------+ user1_kills表,取经路上杀的妖怪数量
+----+-----------+---------------------+-------+
| id | user_name | timestr | kills |
+----+-----------+---------------------+-------+
| 1 | 孙悟空 | 2013-01-10 00:00:00 | 10 |
| 2 | 孙悟空 | 2013-02-01 00:00:00 | 2 |
| 3 | 孙悟空 | 2013-02-05 00:00:00 | 12 |
| 4 | 孙悟空 | 2013-02-12 00:00:00 | 22 |
| 5 | 猪八戒 | 2013-01-11 00:00:00 | 20 |
| 6 | 猪八戒 | 2013-02-07 00:00:00 | 17 |
| 7 | 猪八戒 | 2013-02-08 00:00:00 | 35 |
| 8 | 沙僧 | 2013-01-10 00:00:00 | 3 |
| 9 | 沙僧 | 2013-01-22 00:00:00 | 9 |
| 10 | 沙僧 | 2013-02-11 00:00:00 | 5 |
+----+-----------+---------------------+-------+ user1_equipment表,取经组装备
+----+-----------+--------------+-----------------+-----------------+
| id | user_name | arms | clothing | shoe |
+----+-----------+--------------+-----------------+-----------------+
| 1 | 唐僧 | 九环锡杖 | 锦斓袈裟 | 僧鞋 |
| 2 | 孙悟空 | 金箍棒 | 梭子黄金甲 | 藕丝步云履 |
| 3 | 猪八戒 | 九齿钉耙 | 僧衣 | 僧鞋 |
| 4 | 沙僧 | 降妖宝杖 | 僧衣 | 僧鞋 |
+----+-----------+--------------+-----------------+-----------------+

1. 使用left join优化not in子句

例子:找出取经组中不属于悟空朋友圈的人

+----+-----------+-----------------+-----------------------+
| id | user_name | comment | mobile |
+----+-----------+-----------------+-----------------------+
| 1 | 唐僧 | 旃檀功德佛 | 138245623,021-382349 |
| 3 | 猪八戒 | 净坛使者 | 183208243,055-8234234 |
| 4 | 沙僧 | 金身罗汉 | 293842295,098-2383429 |
+----+-----------+-----------------+-----------------------+

not in写法:
select * from user1 a where a.user_name not in (select user_name from user2 where user_name is not null);

left join写法:
首先看通过user_name进行连接的外连接数据集
select a.*, b.* from user1 a left join user2 b on (a.user_name = b.user_name);

+----+-----------+-----------------+---------------------------------+------+-----------+-----------+
| id | user_name | comment | mobile | id | user_name | comment |
+----+-----------+-----------------+---------------------------------+------+-----------+-----------+
| 2 | 孙悟空 | 斗战胜佛 | 159384292,022-483432,+86-392432 | 1 | 孙悟空 | 美猴王 |
| 1 | 唐僧 | 旃檀功德佛 | 138245623,021-382349 | NULL | NULL | NULL |
| 3 | 猪八戒 | 净坛使者 | 183208243,055-8234234 | NULL | NULL | NULL |
| 4 | 沙僧 | 金身罗汉 | 293842295,098-2383429 | NULL | NULL | NULL |
| 5 | NULL | 白龙马 | 993267899 | NULL | NULL | NULL |
+----+-----------+-----------------+---------------------------------+------+-----------+-----------+

可以看到a表中的所有数据都有显示,b表中的数据只有b.user_name与a.user_name相等才显示,其余都以null值填充,要想找出取经组中不属于悟空朋友圈的人,只需要在b.user_name中加一个过滤条件b.user_name is null即可。
select a.* from user1 a left join user2 b on (a.user_name = b.user_name) where b.user_name is null;

+----+-----------+-----------------+-----------------------+
| id | user_name | comment | mobile |
+----+-----------+-----------------+-----------------------+
| 1 | 唐僧 | 旃檀功德佛 | 138245623,021-382349 |
| 3 | 猪八戒 | 净坛使者 | 183208243,055-8234234 |
| 4 | 沙僧 | 金身罗汉 | 293842295,098-2383429 |
| 5 | NULL | 白龙马 | 993267899 |
+----+-----------+-----------------+-----------------------+

看到这里发现结果集中还多了一个白龙马,继续添加过滤条件a.user_name is not null即可。
select a.* from user1 a left join user2 b on (a.user_name = b.user_name) where b.user_name is null and a.user_name is not null;

2. 使用left join优化标量子查询

例子:查看取经组中的人在悟空朋友圈的昵称

+-----------+-----------------+-----------+
| user_name | comment | comment2 |
+-----------+-----------------+-----------+
| 唐僧 | 旃檀功德佛 | NULL |
| 孙悟空 | 斗战胜佛 | 美猴王 |
| 猪八戒 | 净坛使者 | NULL |
| 沙僧 | 金身罗汉 | NULL |
| NULL | 白龙马 | NULL |
+-----------+-----------------+-----------+

子查询写法:
select a.user_name, a.comment, (select comment from user2 b where b.user_name = a.user_name) comment2 from user1 a;

left join写法:
select a.user_name, a.comment, b.comment comment2 from user1 a left join user2 b on (a.user_name = b.user_name);

3. 使用join优化聚合子查询

例子:查询出取经组中每人打怪最多的日期

+----+-----------+---------------------+-------+
| id | user_name | timestr | kills |
+----+-----------+---------------------+-------+
| 4 | 孙悟空 | 2013-02-12 00:00:00 | 22 |
| 7 | 猪八戒 | 2013-02-08 00:00:00 | 35 |
| 9 | 沙僧 | 2013-01-22 00:00:00 | 9 |
+----+-----------+---------------------+-------+

聚合子查询写法:
select * from user1_kills a where a.kills = (select max(b.kills) from user1_kills b where b.user_name = a.user_name);

join写法:
首先看两表自关联的结果集,为节省篇幅,只取猪八戒的打怪数据来看
select a.*, b.* from user1_kills a join user1_kills b on (a.user_name = b.user_name) order by 1;

+----+-----------+---------------------+-------+----+-----------+---------------------+-------+
| id | user_name | timestr | kills | id | user_name | timestr | kills |
+----+-----------+---------------------+-------+----+-----------+---------------------+-------+
| 5 | 猪八戒 | 2013-01-11 00:00:00 | 20 | 5 | 猪八戒 | 2013-01-11 00:00:00 | 20 |
| 5 | 猪八戒 | 2013-01-11 00:00:00 | 20 | 6 | 猪八戒 | 2013-02-07 00:00:00 | 17 |
| 5 | 猪八戒 | 2013-01-11 00:00:00 | 20 | 7 | 猪八戒 | 2013-02-08 00:00:00 | 35 |
| 6 | 猪八戒 | 2013-02-07 00:00:00 | 17 | 7 | 猪八戒 | 2013-02-08 00:00:00 | 35 |
| 6 | 猪八戒 | 2013-02-07 00:00:00 | 17 | 5 | 猪八戒 | 2013-01-11 00:00:00 | 20 |
| 6 | 猪八戒 | 2013-02-07 00:00:00 | 17 | 6 | 猪八戒 | 2013-02-07 00:00:00 | 17 |
| 7 | 猪八戒 | 2013-02-08 00:00:00 | 35 | 5 | 猪八戒 | 2013-01-11 00:00:00 | 20 |
| 7 | 猪八戒 | 2013-02-08 00:00:00 | 35 | 6 | 猪八戒 | 2013-02-07 00:00:00 | 17 |
| 7 | 猪八戒 | 2013-02-08 00:00:00 | 35 | 7 | 猪八戒 | 2013-02-08 00:00:00 | 35 |
+----+-----------+---------------------+-------+----+-----------+---------------------+-------+

可以看到当两表通过user_name进行自关联,只需要对a表的所有字段进行一个group by,取b表中的max(kills),只要a.kills=max(b.kills)就满足要求了。sql如下
select a.* from user1_kills a join user1_kills b on (a.user_name = b.user_name) group by a.id, a.user_name, a.timestr, a.kills having a.kills = max(b.kills);

4. 使用join进行分组选择

例子:对第3个例子进行升级,查询出取经组中每人打怪最多的前两个日期

+----+-----------+---------------------+-------+
| id | user_name | timestr | kills |
+----+-----------+---------------------+-------+
| 3 | 孙悟空 | 2013-02-05 00:00:00 | 12 |
| 4 | 孙悟空 | 2013-02-12 00:00:00 | 22 |
| 5 | 猪八戒 | 2013-01-11 00:00:00 | 20 |
| 7 | 猪八戒 | 2013-02-08 00:00:00 | 35 |
| 9 | 沙僧 | 2013-01-22 00:00:00 | 9 |
| 10 | 沙僧 | 2013-02-11 00:00:00 | 5 |
+----+-----------+---------------------+-------+

在oracle中,可以通过分析函数来实现
select b.* from (select a.*, row_number() over(partition by user_name order by kills desc) cnt from user1_kills a) b where b.cnt <= 2;

很遗憾,上面sql在mysql中报错ERROR 1064 (42000): You have an error in your SQL syntax; 因为mysql并不支持分析函数。不过可以通过下面的方式去实现。
首先对两表进行自关联,为了节约篇幅,只取出孙悟空的数据
select a.*, b.* from user1_kills a join user1_kills b on (a.user_name=b.user_name and a.kills<=b.kills) order by a.user_name, a.kills desc;

+----+-----------+---------------------+-------+----+-----------+---------------------+-------+
| id | user_name | timestr | kills | id | user_name | timestr | kills |
+----+-----------+---------------------+-------+----+-----------+---------------------+-------+
| 4 | 孙悟空 | 2013-02-12 00:00:00 | 22 | 4 | 孙悟空 | 2013-02-12 00:00:00 | 22 |
| 3 | 孙悟空 | 2013-02-05 00:00:00 | 12 | 3 | 孙悟空 | 2013-02-05 00:00:00 | 12 |
| 3 | 孙悟空 | 2013-02-05 00:00:00 | 12 | 4 | 孙悟空 | 2013-02-12 00:00:00 | 22 |
| 1 | 孙悟空 | 2013-01-10 00:00:00 | 10 | 1 | 孙悟空 | 2013-01-10 00:00:00 | 10 |
| 1 | 孙悟空 | 2013-01-10 00:00:00 | 10 | 3 | 孙悟空 | 2013-02-05 00:00:00 | 12 |
| 1 | 孙悟空 | 2013-01-10 00:00:00 | 10 | 4 | 孙悟空 | 2013-02-12 00:00:00 | 22 |
| 2 | 孙悟空 | 2013-02-01 00:00:00 | 2 | 1 | 孙悟空 | 2013-01-10 00:00:00 | 10 |
| 2 | 孙悟空 | 2013-02-01 00:00:00 | 2 | 3 | 孙悟空 | 2013-02-05 00:00:00 | 12 |
| 2 | 孙悟空 | 2013-02-01 00:00:00 | 2 | 4 | 孙悟空 | 2013-02-12 00:00:00 | 22 |
| 2 | 孙悟空 | 2013-02-01 00:00:00 | 2 | 2 | 孙悟空 | 2013-02-01 00:00:00 | 2 |
+----+-----------+---------------------+-------+----+-----------+---------------------+-------+

从上面的表中我们知道孙悟空打怪前两名的数量是22和12,那么只需要对a表的所有字段进行一个group by,对b表的id做个count,count值小于等于2就满足要求,sql改写如下:
select a.* from user1_kills a join user1_kills b on (a.user_name=b.user_name and a.kills<=b.kills) group by a.id, a.user_name, a.timestr, a.kills having count(b.id) <= 2;

5. 使用笛卡尔积关联实现一列转多行

例子:将取经组中每个电话号码变成一行
原始数据:

+-----------+---------------------------------+
| user_name | mobile |
+-----------+---------------------------------+
| 唐僧 | 138245623,021-382349 |
| 孙悟空 | 159384292,022-483432,+86-392432 |
| 猪八戒 | 183208243,055-8234234 |
| 沙僧 | 293842295,098-2383429 |
| NULL | 993267899 |
+-----------+---------------------------------+

想要得到的数据:

+-----------+-------------+
| user_name | mobile |
+-----------+-------------+
| 唐僧 | 138245623 |
| 唐僧 | 021-382349 |
| 孙悟空 | 159384292 |
| 孙悟空 | 022-483432 |
| 孙悟空 | +86-392432 |
| 猪八戒 | 183208243 |
| 猪八戒 | 055-8234234 |
| 沙僧 | 293842295 |
| 沙僧 | 098-2383429 |
| NULL | 993267899 |
+-----------+-------------+

可以看到唐僧有两个电话,因此他就需要两行。我们可以先求出每人的电话号码数量,然后与一张序列表进行笛卡儿积关联,为了节约篇幅,只取出唐僧的数据
select a.id, b.* from tb_sequence a cross join (select user_name, mobile, length(mobile)-length(replace(mobile, ',', ''))+1 size from user1) b order by 2,1;

+----+-----------+---------------------------------+------+
| id | user_name | mobile | size |
+----+-----------+---------------------------------+------+
| 1 | 唐僧 | 138245623,021-382349 | 2 |
| 2 | 唐僧 | 138245623,021-382349 | 2 |
| 3 | 唐僧 | 138245623,021-382349 | 2 |
| 4 | 唐僧 | 138245623,021-382349 | 2 |
| 5 | 唐僧 | 138245623,021-382349 | 2 |
| 6 | 唐僧 | 138245623,021-382349 | 2 |
| 7 | 唐僧 | 138245623,021-382349 | 2 |
| 8 | 唐僧 | 138245623,021-382349 | 2 |
| 9 | 唐僧 | 138245623,021-382349 | 2 |
| 10 | 唐僧 | 138245623,021-382349 | 2 |
+----+-----------+---------------------------------+------+

a.id对应的就是第几个电话号码,size就是总的电话号码数量,因此可以加上关联条件(a.id <= b.size),将上面的sql继续调整
select b.user_name, replace(substring(substring_index(b.mobile, ',', a.id), char_length(substring_index(mobile, ',', a.id-1)) + 1), ',', '') as mobile from tb_sequence a cross join (select user_name, concat(mobile, ',') as mobile, length(mobile)-length(replace(mobile, ',', ''))+1 size from user1) b on (a.id <= b.size);

6. 使用笛卡尔积关联实现多列转多行

例子:将取经组中每件装备变成一行
原始数据:

+----+-----------+--------------+-----------------+-----------------+
| id | user_name | arms | clothing | shoe |
+----+-----------+--------------+-----------------+-----------------+
| 1 | 唐僧 | 九环锡杖 | 锦斓袈裟 | 僧鞋 |
| 2 | 孙悟空 | 金箍棒 | 梭子黄金甲 | 藕丝步云履 |
| 3 | 猪八戒 | 九齿钉耙 | 僧衣 | 僧鞋 |
| 4 | 沙僧 | 降妖宝杖 | 僧衣 | 僧鞋 |
+----+-----------+--------------+-----------------+-----------------+

想要得到的数据:

+-----------+-----------+-----------------+
| user_name | equipment | equip_mame |
+-----------+-----------+-----------------+
| 唐僧 | arms | 九环锡杖 |
| 唐僧 | clothing | 锦斓袈裟 |
| 唐僧 | shoe | 僧鞋 |
| 孙悟空 | arms | 金箍棒 |
| 孙悟空 | clothing | 梭子黄金甲 |
| 孙悟空 | shoe | 藕丝步云履 |
| 沙僧 | arms | 降妖宝杖 |
| 沙僧 | clothing | 僧衣 |
| 沙僧 | shoe | 僧鞋 |
| 猪八戒 | arms | 九齿钉耙 |
| 猪八戒 | clothing | 僧衣 |
| 猪八戒 | shoe | 僧鞋 |
+-----------+-----------+-----------------+

union的写法:
select user_name, 'arms' as equipment, arms equip_mame from user1_equipment
union all
select user_name, 'clothing' as equipment, clothing equip_mame from user1_equipment
union all
select user_name, 'shoe' as equipment, shoe equip_mame from user1_equipment
order by 1, 2;

join的写法:
首先看笛卡尔数据集的效果,以唐僧为例
select a.*, b.* from user1_equipment a cross join tb_sequence b where b.id <= 3;

+----+-----------+--------------+-----------------+-----------------+----+
| id | user_name | arms | clothing | shoe | id |
+----+-----------+--------------+-----------------+-----------------+----+
| 1 | 唐僧 | 九环锡杖 | 锦斓袈裟 | 僧鞋 | 1 |
| 1 | 唐僧 | 九环锡杖 | 锦斓袈裟 | 僧鞋 | 2 |
| 1 | 唐僧 | 九环锡杖 | 锦斓袈裟 | 僧鞋 | 3 |
+----+-----------+--------------+-----------------+-----------------+----+

使用case对上面的结果进行处理
select user_name,
case when b.id = 1 then 'arms'
   when b.id = 2 then 'clothing'
   when b.id = 3 then 'shoe' end as equipment,
case when b.id = 1 then arms end arms,
case when b.id = 2 then clothing end clothing,
case when b.id = 3 then shoe end shoe
from user1_equipment a cross join tb_sequence b where b.id <=3;

+-----------+-----------+--------------+-----------------+-----------------+
| user_name | equipment | arms | clothing | shoe |
+-----------+-----------+--------------+-----------------+-----------------+
| 唐僧 | arms | 九环锡杖 | NULL | NULL |
| 唐僧 | clothing | NULL | 锦斓袈裟 | NULL |
| 唐僧 | shoe | NULL | NULL | 僧鞋 |
+-----------+-----------+--------------+-----------------+-----------------+

使用coalesce函数将多列数据进行合并
select user_name,
case when b.id = 1 then 'arms'
   when b.id = 2 then 'clothing'
   when b.id = 3 then 'shoe' end as equipment,
coalesce(case when b.id = 1 then arms end,
case when b.id = 2 then clothing end,
case when b.id = 3 then shoe end) equip_mame
from user1_equipment a cross join tb_sequence b where b.id <=3 order by 1, 2;

7. 使用join更新过滤条件中包含自身的表

例子:把同时存在于取经组和悟空朋友圈中的人,在取经组中把comment字段更新为"此人在悟空的朋友圈"

我们很自然地想到先查出user1和user2中user_name都存在的人,然后更新user1表,sql如下
update user1 set comment = '此人在悟空的朋友圈' where user_name in (select a.user_name from user1 a join user2 b on (a.user_name = b.user_name));
很遗憾,上面sql在mysql中报错:ERROR 1093 (HY000): You can't specify target table 'user1' for update in FROM clause,提示不能更新目标表在from子句的表。

那有没有其它办法呢?我们可以将in的写法转换成join的方式
select c.*, d.* from user1 c join (select a.user_name from user1 a join user2 b on (a.user_name = b.user_name)) d on (c.user_name = d.user_name);

+----+-----------+--------------+---------------------------------+-----------+
| id | user_name | comment | mobile | user_name |
+----+-----------+--------------+---------------------------------+-----------+
| 2 | 孙悟空 | 斗战胜佛 | 159384292,022-483432,+86-392432 | 孙悟空 |
+----+-----------+--------------+---------------------------------+-----------+

然后对join之后的视图进行更新即可
update user1 c join (select a.user_name from user1 a join user2 b on (a.user_name = b.user_name)) d on (c.user_name = d.user_name) set c.comment = '此人在悟空的朋友圈';

再查看user1,可以看到user1已修改成功
select * from user1;

+----+-----------+-----------------------------+---------------------------------+
| id | user_name | comment | mobile |
+----+-----------+-----------------------------+---------------------------------+
| 1 | 唐僧 | 旃檀功德佛 | 138245623,021-382349 |
| 2 | 孙悟空 | 此人在悟空的朋友圈 | 159384292,022-483432,+86-392432 |
| 3 | 猪八戒 | 净坛使者 | 183208243,055-8234234 |
| 4 | 沙僧 | 金身罗汉 | 293842295,098-2383429 |
| 5 | NULL | 白龙马 | 993267899 |
+----+-----------+-----------------------------+---------------------------------+

8. 使用join删除重复数据

首先向user2表中插入两条数据
insert into user2(user_name, comment) values ('孙悟空', '美猴王');
insert into user2(user_name, comment) values ('牛魔王', '牛哥');

例子:将user2表中的重复数据删除,只保留id号大的

+----+--------------+-----------+
| id | user_name | comment |
+----+--------------+-----------+
| 1 | 孙悟空 | 美猴王 |
| 2 | 牛魔王 | 牛哥 |
| 3 | 铁扇公主 | 牛夫人 |
| 4 | 菩提老祖 | 葡萄 |
| 5 | NULL | 晶晶 |
| 6 | 孙悟空 | 美猴王 |
| 7 | 牛魔王 | 牛哥 |
+----+--------------+-----------+

首先查看重复记录
select a.*, b.* from user2 a join (select user_name, comment, max(id) id from user2 group by user_name, comment having count(*) > 1) b on (a.user_name=b.user_name and a.comment=b.comment) order by 2;

+----+-----------+-----------+-----------+-----------+------+
| id | user_name | comment | user_name | comment | id |
+----+-----------+-----------+-----------+-----------+------+
| 1 | 孙悟空 | 美猴王 | 孙悟空 | 美猴王 | 6 |
| 6 | 孙悟空 | 美猴王 | 孙悟空 | 美猴王 | 6 |
| 2 | 牛魔王 | 牛哥 | 牛魔王 | 牛哥 | 7 |
| 7 | 牛魔王 | 牛哥 | 牛魔王 | 牛哥 | 7 |
+----+-----------+-----------+-----------+-----------+------+

接着只需要删除(a.id < b.id)的数据即可
delete a from user2 a join (select user_name, comment, max(id) id from user2 group by user_name, comment having count(*) > 1) b on (a.user_name=b.user_name and a.comment=b.comment) where a.id < b.id;

查看user2,可以看到重复数据已经被删掉了
select * from user2;

+----+--------------+-----------+
| id | user_name | comment |
+----+--------------+-----------+
| 3 | 铁扇公主 | 牛夫人 |
| 4 | 菩提老祖 | 葡萄 |
| 5 | NULL | 晶晶 |
| 6 | 孙悟空 | 美猴王 |
| 7 | 牛魔王 | 牛哥 |
+----+--------------+-----------+

总结:给大家就介绍到这里,大家有兴趣可以多造点数据,然后比较不同的sql写法在执行时间上的区别。本文例子取自于慕课网《sql开发技巧》。

Mysql-巧用join来优化sql的更多相关文章

  1. mysql补充(3)优化sql语句查询常用的30种方法

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索 ...

  2. 「MySQL高级篇」explain分析SQL,索引失效&&常见优化场景

    大家好,我是melo,一名大三后台练习生 专栏回顾 索引的原理&&设计原则 欢迎关注本专栏:MySQL高级篇 本篇速览 在我们上一篇文章中,讲到了索引的原理&&设计原则 ...

  3. mysql优化SQL语句的一般步骤及常用方法

    一.优化SQL语句的一般步骤 1. 通过show status命令了解各种SQL的执行频率 mysqladmin extended-status 或: show [session|global]sta ...

  4. MySQL 5.7 优化SQL提升100倍执行效率的深度思考(GO)

    系统环境:微软云Linux DS12系列.Centos6.5 .MySQL 5.7.10.生产环境,step1,step2是案例,精彩的剖析部分在step3,step4. 1.慢sql语句大概需要13 ...

  5. mysql优化sql语句

    mysql优化sql语句   常见误区   www.2cto.com   误区1:   count(1)和count(primary_key) 优于 count(*)   很多人为了统计记录条数,就使 ...

  6. 重新学习MySQL数据库12:从实践sql语句优化开始

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/a724888/article/details/79394168 本文不堆叠网上海量的sql优化技巧或 ...

  7. MySQL 一次非常有意思的SQL优化经历:从30248.271s到0.001s

    转载自:https://www.toutiao.com/i6668275333034148356 一.背景介绍 用的数据库是mysql5.6,下面简单的介绍下场景 课程表: 数据100条 学生表: 数 ...

  8. MySql(五)SQL优化-优化SQL语句的一般步骤

    MySql(五)SQL优化-优化SQL语句的一般步骤 一.优化SQL语句的一般步骤 1.1 通过show status命令了解各种SQL的执行频率 1.2 定位执行效率较低的SQL语句 1.3 通过e ...

  9. mysql 开发进阶篇系列 1 SQL优化(show status命令)

    一.概述 随着上线后,数据越来越多,很多sql语句开始显露出性能问题,本章介绍在mysql中优化sql语句的方法.  1.  通过show status 命令了解各种sql的执行频率 通过show [ ...

随机推荐

  1. ~~小练习:python的简易购物车~~

    进击のpython 1,用户先给自己的账户充钱:比如先充3000元. 2,有如下的一个格式: goods = [{"name": "电脑", "pri ...

  2. request 中url拼接排序参数与签名算法

    一.参数要求: { appId:应用在后台创建应用时分配的应用编号,与应用密钥一一对应 sign:按照当前请求参数名的字母序进行升序排列(排序时区分大小写,除sign外,其它值不为空的参数都参与签名) ...

  3. 【Phabricator】教科书一般的Phabricator安装教程(配合官方文档并带有踩坑解决方案)

    随着一声惊雷和滂沱的大雨,我的Phabricator页面终于在我的学生机上跑了起来. 想起在这五个小时内踩过的坑甚如大学隔壁炮王干过的妹子,心里的成就感不禁油然而生. 接下来,我将和大家分享一下本人在 ...

  4. 个人永久性免费-Excel催化剂插件功能修复与更新汇总篇之九

    第11波-快速批量插入图片并保护纵横比不变 原文链接:https://www.jianshu.com/p/9a3d9aa7ba7e 修复了插入图片有纵向的图片时,插入后还是显示横向的情况. 第83波- ...

  5. jmeter使用问题——将接口返回变量存储成csv文件

    在使用jmeter做接口测试时,一整个jmx测试计划中,存在多个线程,多个接口的测试 但是接口可以分类,比如业务接口.查询接口.更新接口等 考虑自动化接口测试一般都是一次性的,有完整的闭环链路,一般步 ...

  6. CF175C Geometry Horse(贪心)

    CF175C 贪心,注意有不少细节,很容易死循环TLE 贪心是显而易见的,每次枚举价值最小的物品,进行销毁操作 朴素的枚举每一件物品复杂度为\(O(\sum k_i)\),明显超时 我们注意到朴素的+ ...

  7. mysql协议分析1---报文的格式和基本类型

    navicat 和 mysql 是一对好基友,每天都有非常频繁的交流,主人在navicat上写下每条sql语句,轻轻的点了下执行按钮,navicat就飞快的把主人的指令传送到mysql那里,mysql ...

  8. Linux基础之快照克隆、Xshell优化、Linux历史

    今天主要分享4个Linux基础知识,第一个知识是虚拟机快照,第二个是虚拟机克隆,第三个是优化Xshell,第四个是简述Linux历史. 先分享第一个知识——虚拟机快照. 1.4)虚拟机快照 虚拟机快照 ...

  9. thymeleaf介绍

    作者:纯洁的微笑出处:http://www.ityouknow.com/  增加了一小部分内容 简单说, Thymeleaf 是一个跟 Velocity.FreeMarker 类似的模板引擎,它可以完 ...

  10. IDEA:No SLF4J providers were found.

    如果您是用IDEA 的 maven 写的 将slf4j的导入包 更改 为下列代码 <dependency> <groupId>org.slf4j</groupId> ...