CF1185F Two Pizzas
CF1185F Two Pizzas
题目描述
A company of nn friends wants to order exactly two pizzas. It is known that in total there are 99 pizza ingredients in nature, which are denoted by integers from 11 to 99 .
Each of the nn friends has one or more favorite ingredients: the ii -th of friends has the number of favorite ingredients equal to f_if**i ( 1 \le f_i \le 91≤f**i≤9 ) and your favorite ingredients form the sequence b_{i1}, b_{i2}, \dots, b_{if_i}b**i1,b**i2,…,bif**i ( 1 \le b_{it} \le 91≤bit≤9 ).
The website of CodePizza restaurant has exactly mm ( m \ge 2m≥2 ) pizzas. Each pizza is characterized by a set of r_jr**j ingredients a_{j1}, a_{j2}, \dots, a_{jr_j}a**j1,a**j2,…,ajr**j ( 1 \le r_j \le 91≤r**j≤9 , 1 \le a_{jt} \le 91≤ajt≤9 ) , which are included in it, and its price is c_jc**j .
Help your friends choose exactly two pizzas in such a way as to please the maximum number of people in the company. It is known that a person is pleased with the choice if each of his/her favorite ingredients is in at least one ordered pizza. If there are several ways to choose two pizzas so as to please the maximum number of friends, then choose the one that minimizes the total price of two pizzas.
输入格式
The first line of the input contains two integers nn and mm ( 1 \le n \le 10^5, 2 \le m \le 10^51≤n≤105,2≤m≤105 ) — the number of friends in the company and the number of pizzas, respectively.
Next, the nn lines contain descriptions of favorite ingredients of the friends: the ii -th of them contains the number of favorite ingredients f_if**i ( 1 \le f_i \le 91≤f**i≤9 ) and a sequence of distinct integers b_{i1}, b_{i2}, \dots, b_{if_i}b**i1,b**i2,…,bif**i ( 1 \le b_{it} \le 91≤bit≤9 ).
Next, the mm lines contain pizza descriptions: the jj -th of them contains the integer price of the pizza c_jc**j ( 1 \le c_j \le 10^91≤c**j≤109 ), the number of ingredients r_jr**j ( 1 \le r_j \le 91≤r**j≤9 ) and the ingredients themselves as a sequence of distinct integers a_{j1}, a_{j2}, \dots, a_{jr_j}a**j1,a**j2,…,ajr**j ( 1 \le a_{jt} \le 91≤ajt≤9 ).
输出格式
Output two integers j_1j1 and j_2j2 ( 1 \le j_1,j_2 \le m1≤j1,j2≤m , j_1 \ne j_2j1=j2 ) denoting the indices of two pizzas in the required set. If there are several solutions, output any of them. Pizza indices can be printed in any order.
题意翻译
【题目描述】
现在到了午饭时间,你要为nn个朋友定披萨。
众所周知,披萨的原料分为9种。每位朋友都有自己喜好的原料(一种或多种),第ii个朋友喜欢的原料有f_if**i种,分别是b_{i1},b{i2},...,b{if_i}b**i1,b**i2,...,bif**i。
披萨店出售mm种不同的披萨。第jj种披萨里面有r_jr**j种原料,分别是a_{j1},a_{j2},...,a_{jr_j}a**j1,a**j2,...,ajr**j。第jj种披萨售价为c_jc**j。
现在你们决定购买恰好两个披萨。我们称一个人是“满意的”,当且仅当他/她想要的每种原料都在至少一个买下来的披萨出现。你希望最多人是“满意的”,并在这个前提下,支出越少越好。请输出任意一种方案。
【输入格式】
第一行,两个正整数n,mn,m,分别代表人数和披萨种数。
接下来nn行,每行描述一个人的口味,先是一个正整数f_if**i,接下来f_if**i个正整数b_{i1},b{i2},...,b{if_i}b**i1,b**i2,...,bif**i,含义如题所示。
接下来mm行,每行描述一种披萨。先是两个正整数c_j,r_jc**j,r**j,接下来r_jr**j个正整数a_{j1},a_{j2},...,a_{jr_j}a**j1,a**j2,...,ajr**j,含义如题所示。
【输出格式】
一行,两个正整数j_1.j_2j1.j2,代表所买的两个披萨。以任意顺序输出任意方案均可。
【数据范围与约定】
保证:
- 1\leq n\leq 10^5,2\leq m\leq 10^51≤n≤105,2≤m≤105
- 1\leq c_j\leq 10^91≤c**j≤109
- 1\leq f_i,b_{it},r_j,a_{jt}\leq 91≤f**i,bit,r**j,ajt≤9
输入输出样例
输入 #1复制
输出 #1复制
输入 #2复制
输出 #2复制
输入 #3复制
输出 #3复制
题解:
2019.11.8模拟赛T2 30分场
前一天刚学状压就来一道状压的题,虽然没场上切但还是感谢出题人@ysy20021208,吸一口大佬欧气。
一开始看到数据范围果断选择了状压,一看就是这9种东西选还是没选,然后觉得可以依次枚举这\(m\)张披萨两两搭配合并之后能满足多少人的欲望。进行更新。一看这复杂度是\(O(N*M*M)\)的,肯定是废只能拿30分。后来一想:虽然\(n\)是\(10^5\)级别的,但是这\(9\)位的状态无论如何只能搭配出\(512(2^9)\)种可能,所以\(N\)就被我们优化到了\(512\),然后一顿乱搞,最后还是拿了30分(滑稽)
(暴力考场代码使用了各种\(C++STL\)...)
#include<cstdio>
#include<bitset>
#include<vector>
#include<algorithm>
#include<iostream>
using namespace std;
const int maxn=1e5+10;
const int INF=2147483645;
int n,m,maxx,minn=INF,ansx,ansy,tot;
bitset<10> t;
bitset<10> s[1<<9+1];
vector<pair<int,bitset<10> > >vec;
struct node
{
int v,id;
bitset<10> x;
}p[maxn];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
int a,f;
bitset<10> tt;
scanf("%d",&a);
for(int j=1;j<=a;j++)
{
int k;
scanf("%d",&k);
tt.set(k);
}
for(int j=0;j<vec.size();j++)
if(vec[j].second==tt)
{
vec[j].first++;
break;
}
vec.push_back(make_pair(1,tt));
}
for(int i=1;i<=m;i++)
{
int a;
scanf("%d%d",&p[i].v,&a);
for(int j=1;j<=a;j++)
{
int k;
scanf("%d",&k);
p[i].x.set(k);
}
p[i].id=i;
}
maxx=-1;
for(int i=1;i<=m;i++)
for(int j=i;j<=m;j++)
{
tot=0;
if(i==j)
continue;
t=(p[i].x|p[j].x);
for(int k=0;k<vec.size();k++)
if((vec[k].second&t)==vec[k].second)
tot+=vec[k].first;
if(tot>=maxx)
{
if(tot>maxx)
minn=INF;
maxx=tot;
if((p[i].v+p[j].v)<minn)
{
ansx=i,ansy=j;
minn=p[i].v+p[j].v;
}
}
}
printf("%d %d",ansx,ansy);
return 0;
}
然后我详细介绍一下看完题解之后自己捋顺的满分思路:
其实暴力想的时候已经离正解好近了(真是遗憾)。
我想到了把\(n\)个人的状态进行包含性质的枚举,但是就是没想到\(m\)张披萨也可以这么干(简直匪夷所思)。
看一下题:我们发现:对于两张披萨,它们有可能能满足同一个人的需求,这时,这两张披萨之间肯定是子集或真子集的关系。那么我们完全可以把\(m\)张披萨也“需求化”。什么意思呢?既然枚举所有的\(n,m\)复杂度过高,那么我们就“要什么拿什么”,设置\(minn[st]\)数组来存能满足需求为\(st\)的人的所有披萨中价值最小的那张的花费。并且,存储\(num[st]\)表示需求为\(st\)的人的人数。同时,因为我们需要选择最优秀的两张披萨,所以还需要记录一下满足需求为\(st\)的人的所有披萨中价值第二小的花费为\(minn2[st]\)。
那么我们在对披萨们进行预处理的时候,就可以顺道把这两个数组处理出来。并且,因为我们最终要输出披萨的编号,所以我们还需要另开数组\(k,k2\)来存当前状态最小价值披萨的编号、次小价值披萨的编号。
然后我们就完成了暴力的优化。由原来的\(O(m^2)\)级别的复杂度成功降低到了\(O(512\times 512)\)的复杂度。所以,在我们状态压缩的时候,懂得优化复杂度,一定要从状态入手,看枚举的东西能不能按状态进一步压缩而变得更快。
AC代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=1e5+10;
const int maxs=1<<9;
int n,m;
int a[maxn],b[maxn],v[maxn],num[maxs];
int minn[maxs],minn2[maxs],k[maxs],k2[maxs];
int ans[maxs],ansx[maxs],ansy[maxs];
int main()
{
memset(minn,0x3f,sizeof(minn));
memset(minn2,0x3f,sizeof(minn2));
memset(ans,0x7f,sizeof(ans));
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
int p;
scanf("%d",&p);
for(int j=1;j<=p;j++)
{
int k;
scanf("%d",&k);
a[i]|=1<<(k-1);
}
num[a[i]]++;
}
for(int i=1;i<=m;i++)
{
int p;
scanf("%d%d",&v[i],&p);
for(int j=1;j<=p;j++)
{
int k;
scanf("%d",&k);
b[i]|=1<<(k-1);
}
if(v[i]<minn[b[i]])
{
minn2[b[i]]=minn[b[i]];
minn[b[i]]=v[i];
k2[b[i]]=k[b[i]];
k[b[i]]=i;
}
else if(v[i]<minn2[b[i]])
{
minn2[b[i]]=v[i];
k2[b[i]]=i;
}
}
for(int i=0;i<maxs;i++)
if(k[i]&&k2[i])
{
ans[i]=minn[i]+minn2[i];
ansx[i]=k2[i],ansy[i]=k[i];
}
for(int i=0;i<maxs;i++)
for(int j=i+1;j<maxs;j++)
{
if(minn[i]>1000000000 || minn[j]>1000000000)
continue;
ans[i|j]=min(ans[i|j],minn[i]+minn[j]);
if(ans[i|j]==minn[i]+minn[j])
{
ansx[i|j]=k[i];
ansy[i|j]=k[j];
}
}
for(int i=0;i<maxs;i++)
printf("%d\n",ans[i]);
int target=0,maxx=-1,mi=2100000000;
for(int i=0;i<maxs;i++)
{
if(ans[i]>2000000000)
continue;
int tmp=0;
for(int j=0;j<maxs;j++)
if((j&i)==j)
tmp+=num[j];
if(tmp>maxx)
target=i,maxx=tmp,mi=ans[i];
else if(tmp==maxx && ans[i]<mi)
target=i,mi=ans[i];
}
printf("%d %d\n",ansx[target],ansy[target]);
return 0;
}
CF1185F Two Pizzas的更多相关文章
- CF1185F Two Pizzas 状压
你发现 pizza 种类数不会很多,状压一下就可以了 code: #include <bits/stdc++.h> #define M 11 #define N 100005 #defin ...
- Django模型类Meta元数据详解
转自:https://my.oschina.net/liuyuantao/blog/751337 简介 使用内部的class Meta 定义模型的元数据,例如: from django.db impo ...
- ANNOTATION PROCESSING 101 by Hannes Dorfmann — 10 Jan 2015
原文地址:http://hannesdorfmann.com/annotation-processing/annotationprocessing101 In this blog entry I wo ...
- django model Meta选项
可用的 Meta 选项 abstract Options.abstract 如果 abstract = True ,这个 model 就是一个 抽象基类 . app_label Options.app ...
- What Is Mathematics?
What Is Mathematics? The National Council of Teachers of Mathematics (NCTM), the world's largest org ...
- poj3311 Hie with the Pie (状态压缩dp,旅行商)
Hie with the Pie Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3160 Accepted: 1613 ...
- 状态压缩 DP
D - Hie with the Pie Crawling in process... Crawling failed Time Limit:2000MS Memory Limit:65536 ...
- 【Django】Django model与数据库操作对应关系(转)
Django对数据库的操作分用到三个类:Manager.QuerySet.Model. Manager的主要功能定义表级方法(表级方法就是影响一条或多条记录的方法),我们可以以models.Manag ...
- Head First Design Patterns
From Head First Design Patterns. Design Principle: Idnetify the aspects of your application that var ...
随机推荐
- C语言快速入门一:win10系统环境搭建
0.搭建环境:WIN10 64位 1.下载minGW.zip编译器 2.解决上述文件,配置环境变量 3.配置变成后验证:打开cmd命令行,输入gcc -v 提示以下内容,说明编译器安装成功 D:\mm ...
- LeetCode 1244. 力扣排行榜
地址 https://www.acwing.com/solution/LeetCode/content/5765/ 题目描述新一轮的「力扣杯」编程大赛即将启动,为了动态显示参赛者的得分数据,需要设计一 ...
- 2019-2020-1 20199305《Linux内核原理与分析》第六周作业
系统调用的三层机制(下) (一)给MenuOS增加命令 (1)打开虚拟机,首先用rm -rf menu指令删除当前的menu目录,然后用git clone重新克隆一个新版本的menu,进入menu,运 ...
- vuex 的使用 mapState, mapGetters, mapMutations, mapActions
state => 基本数据getters => 从基本数据派生的数据mutations => 提交更改数据的方法,同步!actions => 像一个装饰器,包裹mutation ...
- 趣谈Linux操作系统学习笔记:第二十五讲
一.mmap原理 在虚拟内存空间那一节,我们知道,每一个进程都有一个列表vm_area_struct,指向虚拟地址空间的不同内存块,这个变量名字叫mmap struct mm_struct { str ...
- Django中的跨域请求问题
本文目录 一 同源策略 二 CORS(跨域资源共享)简介 三 CORS基本流程 四 CORS两种请求详解 五 Django项目中支持CORS 回到目录 一 同源策略 同源策略(Same origin ...
- VSCode 开发插件 推荐
VSCode 必装的 10 个高效开发插件 本文介绍了目前前端开发最受欢迎的开发工具 VSCode 必装的 10 个开发插件,用于大大提高软件开发的效率. VSCode 的基本使用可以参考我的原创视 ...
- ARM64的内核栈、用户栈、寄存器上下文
1. 内核栈的分配,即thread_info的分配,是在do_fork->dup_task_struct中分配(默认为2个pages),并赋值给task_struct->stack: 2. ...
- Redis for OPS 06:Redis Cluster 集群
写在前面的话 前面的主从,HA 都只是解决我们数据安全性方面的问题,并没有解决我们业务瓶颈的问题.当业务并发到达一定瓶颈的时候,我们需要对服务进行横向扩展,而不是纵向扩展.这就需要引入另外一个东西,R ...
- python中13个实用的文件操作
1. 判断指定目录是否存在: os.path.exists(input_folder) 2. 判断指定目录是不是文件夹 os.path.isdir(input_folder) 3. 判断指定目录是不是 ...