HotNItems

  拓展需求:实时统计双十一下单量,实时统计成交额,实时查看锅炉温度变化曲线,每个5分钟看一下过去一个小时温度变化曲线,

  涉及到的技术点:sliding window、Watermark、event time

  用到的算子或者说叫链式调用:keyby、timeWindow、aggregate、assignTimestampsAndWatermarks、filter、processFunction底层API

 PopularPlacesToEs

  框架:flume -> Kafka、flink、es、kibana

  涉及到的技术点:sliding window、watermark、event time

  用到的算子:keyby、filter、apply、map、timeWindow

实现一个“实时热门商品”的需求,我们可以将“实时热门商品”翻译成程序员更好理解的需求:

  每隔5分钟输出最近一小时内点击量最多的前N个商品。将这个需求进行分解我们大概要做这么几件事情:

  • 抽取出业务时间戳,告诉Flink框架基于业务时间做窗口

  • 过滤出点击行为数据

  • 按一小时的窗口大小,每5分钟统计一次,做滑动窗口聚合(Sliding Window)

  • 按每个窗口聚合,输出每个窗口中点击量前N名的商品

public class HotItems {
public static void main(String[] args) throws Exception {
//创建执行环境 execution environment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 告诉系统按照 EventTime 处理
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
// 为了打印到控制台的结果不乱序,我们配置全局的并发为1,改变并发对结果正确性没有影响
//env.setMaxParallelism(1);
//Caused by: org.apache.flink.runtime.JobException: Vertex Split Reader: Custom File source -> Timestamps/Watermarks -> Filter's parallelism (8) is higher than the max parallelism (1). Please lower the parallelism or increase the max parallelism.
env.setParallelism(1);
// UserBehavior.csv 的本地文件路径, 在 resources 目录下
URL fileURL = HotItems.class.getClassLoader().getResource("UserBehavior.csv");
Path filePath = Path.fromLocalFile(new File(fileURL.toURI())); //抛出异常URISyntaxException // 抽取 UserBehavior 的 TypeInformation,是一个 PojoTypeInfo ???
PojoTypeInfo<UserBehavior> pojoType = (PojoTypeInfo<UserBehavior>) TypeExtractor.createTypeInfo(UserBehavior.class);//TypeInformation<UserBehavior>
String[] fieldOrder = new String[]{"userId", "itemId", "categoryId", "behavior", "timestamp"}; //创建PojoCsvInputFormat
PojoCsvInputFormat<UserBehavior> csvInput = new PojoCsvInputFormat<>(filePath, pojoType, fieldOrder);
// 创建数据源,得到 UserBehavior 类型的 DataStream
env.createInput(csvInput, pojoType)
.assignTimestampsAndWatermarks(new AscendingTimestampExtractor<UserBehavior>() {
@Override
public long extractAscendingTimestamp(UserBehavior userBehavior) {
return userBehavior.timestamp * 1000;// 原始数据单位秒,将其转成毫秒
}
}).filter(new FilterFunction<UserBehavior>() { // 过滤出只有点击的数据
@Override
public boolean filter(UserBehavior userBehavior) throws Exception {
return userBehavior.behavior.equals("pv");
}
}).keyBy("itemId")// 我们使用.keyBy("itemId")对商品进行分组聚合
// 使用.timeWindow(Time size, Time slide)对每个商品做滑动窗口(1小时窗口,5分钟滑动一次)。
.timeWindow(Time.minutes(60), Time.minutes(5)) //别导错包了
.aggregate(new CountAgg(), new WindowResultFunction())
//CountAgg统计窗口中的条数; 商品ID,窗口,点击量封装成了ItemViewCount进行输出
.keyBy("windowEnd")
.process(new TopNHotItems(3)).print(); env.execute("Hot Items job"); }
/**
* 求某个窗口中前 N 名的热门点击商品,key 为窗口时间戳,输出为 TopN 的结果字符串
*/
public static class TopNHotItems extends KeyedProcessFunction<Tuple, ItemViewCount, String> {
private final int topSize;
public TopNHotItems(int topSize) throws Exception {
this.topSize = topSize;
} // 用于存储商品与点击数的状态,待收齐同一个窗口的数据后,再触发 TopN 计算
private ListState<ItemViewCount> itemState; /*
* 这里我们还使用了ListState<ItemViewCount>来存储收到的每条ItemViewCount消息,
* 保证在发生故障时,状态数据的不丢失和一致性。
* ListState是Flink提供的类似Java List接口的State API,
* 它集成了框架的checkpoint机制,自动做到了exactly-once的语义保证。*/
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
ListStateDescriptor<ItemViewCount> itemsStateDesc = new ListStateDescriptor<>(
"itemState-state",//状态的描述符
ItemViewCount.class);//存储的类型
//从运行时上下文获取
itemState = getRuntimeContext().getListState(itemsStateDesc);
}
/* * ProcessFunction是Flink提供的一个low-level API,用于实现更高级的功能。
* 它主要提供了定时器timer的功能(支持EventTime或ProcessingTime)。
* 本案例中我们将利用timer来判断何时收齐了某个window下所有商品的点击量数据。
* 由于Watermark的进度是全局的,在processElement方法中,每当收到一条数据(ItemViewCount),我们就注册一个windowEnd+1的定时器(Flink框架会自动忽略同一时间的重复注册)。
* windowEnd+1的定时器被触发时,意味着收到了windowEnd+1的Watermark,即收齐了该windowEnd下的所有商品窗口统计值。
* 我们在onTimer()中处理将收集的所有商品及点击量进行排序,选出TopN,并将排名信息格式化成字符串后进行输出。*/ @Override
public void processElement(ItemViewCount input, Context context, Collector<String> collector) throws Exception {
// 每条数据都保存到状态中
itemState.add(input);
// 注册 windowEnd+1 的 EventTime Timer, 当触发时,说明收齐了属于windowEnd窗口的所有商品数据
context.timerService().registerEventTimeTimer(input.windowEnd + 1);
} @Override
public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
// 获取收到的所有商品点击量
List<ItemViewCount> allItems = new ArrayList<>();
for (ItemViewCount item : itemState.get()) {
allItems.add(item);
}
// 提前清除状态中的数据,释放空间
itemState.clear();
// 按照点击量从大到小排序
allItems.sort(new Comparator<ItemViewCount>() {
@Override
public int compare(ItemViewCount o1, ItemViewCount o2) {
return (int) (o2.viewCount - o1.viewCount);
}
});
// 将排名信息格式化成 String, 便于打印
StringBuilder result = new StringBuilder();
result.append("===========================\n");
result.append("时间:").append(new Timestamp(timestamp - 1)).append("\n");
for (int i = 0; i < allItems.size() && i < topSize; i++) {
ItemViewCount currentItem = allItems.get(i);
// No1: 商品ID=12224 浏览量=2413
result.append("No").append(i).append(":")
.append(" 商品ID=").append(currentItem.itemId)
.append(" 浏览量=").append(currentItem.viewCount)
.append("\n");
}
result.append("==========================\n\n");
// 控制输出频率,模拟实时滚动结果
Thread.sleep(1000);
out.collect(result.toString());
//super.onTimer(timestamp, ctx, out);
}
} /** 用于输出窗口的结果 */
/** 将每个key每个窗口聚合后的结果带上其他信息进行输出。*/
/**
* 我们这里实现的WindowResultFunction将主键商品ID,窗口,点击量封装成了ItemViewCount进行输出。
*/ private static class WindowResultFunction implements WindowFunction<Long, ItemViewCount, Tuple, TimeWindow> {
@Override
public void apply(Tuple key, // 窗口的主键,即 itemId
TimeWindow window, // 窗口
Iterable<Long> aggregateResult,// 聚合函数的结果,即 count 值
Collector<ItemViewCount> collector) // 输出类型为 ItemViewCount
{
Long itemId = ((Tuple1<Long>) key).f0;
Long count = aggregateResult.iterator().next();
collector.collect(ItemViewCount.of(itemId, window.getEnd(), count)); } } /**
* 商品点击量(窗口操作的输出类型)
*/
public static class ItemViewCount { //public
public long itemId; // 商品ID
public long windowEnd; // 窗口结束时间戳
public long viewCount; // 商品的点击量 public static ItemViewCount of(long itemId, long windowEnd, long viewCount) {
ItemViewCount result = new ItemViewCount();
result.itemId = itemId;
result.windowEnd = windowEnd;
result.viewCount = viewCount;
return result;
}
} /** COUNT 统计的聚合函数实现,每出现一条记录加一 */
/** 接口: AggregateFunction(in, acc, out) */
/**
* 这里的CountAgg实现了AggregateFunction接口,功能是统计窗口中的条数,即遇到一条数据就加一。
*/
public static class CountAgg implements AggregateFunction<UserBehavior, Long, Long> { @Override
public Long createAccumulator() {
return 0L;
} @Override
public Long add(UserBehavior userBehavior, Long acc) {
return acc + 1;
} @Override
public Long getResult(Long acc) {
return acc;
} @Override
public Long merge(Long acc1, Long acc2) {
return acc1 + acc2;
}
} /**
* 用户行为数据结构
**/
public static class UserBehavior {
public long userId; // 用户ID
public long itemId; // 商品ID
public int categoryId; // 商品类目ID
public String behavior; // 用户行为, 包括("pv", "buy", "cart", "fav")
public long timestamp; // 行为发生的时间戳,单位秒 }
}
===========================
时间:2017-11-26 09:05:00.0
No0: 商品ID=5051027 浏览量=3
No1: 商品ID=3493253 浏览量=3
No2: 商品ID=4261030 浏览量=3
========================== ===========================
时间:2017-11-26 09:10:00.0
No0: 商品ID=812879 浏览量=5
No1: 商品ID=2600165 浏览量=4
No2: 商品ID=2828948 浏览量=4
========================== ===========================
时间:2017-11-26 09:15:00.0
No0: 商品ID=812879 浏览量=7
No1: 商品ID=138964 浏览量=5
No2: 商品ID=4568476 浏览量=5
==========================

Fink| 实时热门商品的更多相关文章

  1. 59、Spark Streaming与Spark SQL结合使用之top3热门商品实时统计案例

    一.top3热门商品实时统计案例 1.概述 Spark Streaming最强大的地方在于,可以与Spark Core.Spark SQL整合使用,之前已经通过transform.foreachRDD ...

  2. 05-06 Flutter JSON和序列化反序列化、创建模型类转换Json数据、轮播图数据渲染:Flutter创建商品数据模型 、请求Api接口渲染热门商品 推荐商品

    Config.dart class Config{ static String domain='http://jd.itying.com/'; } FocusModel.dart class Focu ...

  3. 15-Flink实战项目之实时热销排行

    戳更多文章: 1-Flink入门 2-本地环境搭建&构建第一个Flink应用 3-DataSet API 4-DataSteam API 5-集群部署 6-分布式缓存 7-重启策略 8-Fli ...

  4. Flink| 实时需要分析

    ========================实时流量统计 1. 实时热门商品HotItems 每隔 5 分钟输出最近一小时内点击量最多的前 N 个商品. 抽取出业务时间戳,告诉 Flink 框架基 ...

  5. 【新鲜出炉的个人项目】基于 Flink 的商品推荐系统

    FlinkCommodityRecommendationSystem Recs FlinkCommodityRecommendationSystem(基于 Flink 的商品推荐系统) 1. 前言 系 ...

  6. Flink 灵魂两百问,这谁顶得住?

    Flink 学习 https://github.com/zhisheng17/flink-learning 麻烦路过的各位亲给这个项目点个 star,太不易了,写了这么多,算是对我坚持下来的一种鼓励吧 ...

  7. Flink 使用(一)——从kafka中读取数据写入到HBASE中

    1.前言 本文是在<如何计算实时热门商品>[1]一文上做的扩展,仅在功能上验证了利用Flink消费Kafka数据,把处理后的数据写入到HBase的流程,其具体性能未做调优.此外,文中并未就 ...

  8. flink相关

    flink一.简单实时计算方案 假如现在我们有一个电商平台,每天访问的流量巨大,主要访问流量都集中在衣服类.家电类页面,那么我们想实时看到这两类页面的访问量走势(十分钟出一个统计量),当做平台的重要指 ...

  9. 直击 KubeCon 2019 现场,阿里云 Hands-on Workshop 亮点回顾

    2019 年 6 月 24 日,KubeCon + CloudNativeCon 第二次在中国举办.此次大会阿里共有 26 个技术演讲入选,并有两场沙龙活动,阿里云专家也与技术极客们也再次相聚.Kub ...

随机推荐

  1. Linux 的 Crond(二)

    最近由于工作中用到了crond,之前对crond不是很了解,只知道咋用,但是这次需要考虑好多情况,所以又深入了解了一下crond,下面就以下几个问题来谈谈crond. crond 中指定的job,如果 ...

  2. python request获取ip、获取登录设备

    from flask import request 获取ip request.remote_addr 获取登录设备 request.user_agent.string

  3. python接口自动化11-pytest入门

    前言 pytest是一个非常成熟的全功能的Python测试框架,适合从简单的单元到复杂的功能测试,主要特点有以下几点: 简单灵活,容易上手: 支持参数化: 能够支持简单的单元测试: 标记测试功能与属性 ...

  4. dom元素上添加断点(使用dom breakpoint找到修改属性的javascript代码)

    使用dom breakpoint能快速找到修改了某一个dom element的JavaScript code位于何处.在Chrome development tool里,选中想要inspect的dom ...

  5. CentOS 7 firewalld详解,添加删除策略

    一.CentOS7中firewall防火墙 修改防火墙配置文件之前,需要对之前防火墙[/etc/firewalld/zones/public.xml]做好备份 重启防火墙后,需要确认防火墙状态和防火墙 ...

  6. Vant ui

    轻量.可靠的移动端 Vue 组件库 https://youzan.github.io/vant/#/zh-CN/intro postcss-pxtorem vue:将px转化为rem,适配移动端van ...

  7. C#数组3(可变数组)

    using System; namespace class1 { class program { static void Main(string[] args) { ][];//这里的行必须定义好,但 ...

  8. C# Task ContinueWith

    static void Main(string[] args) { Task firstTask = Task.Run(() => { PrintPlus(); }); Task secondT ...

  9. 如何访问到静态的文件,如jpg,js,css.

    如果你的DispatcherServlet拦截"*.do"这样的有后缀的URL,就不存在访问不到静态资源的问题. 如果你的DispatcherServlet拦截"/&qu ...

  10. centOS服务器安装mongodb

    1.为服务器添加mongodb的包管理工具,这就相当于在windows中安装npm,以便能用npm安装各种依赖.添加了这个包管理工具,才能在后面对mongodb做一系列操作. touch /etc/y ...