Java面试-动态规划与组合数
最近在刷力扣上的题目,刷到了65不同路径,当初上大学的时候,曾在hihocoder上刷到过这道题目,但是现在已经几乎全忘光了,大概的知识点是动态规划,如今就让我们一起来回顾一下。
从题目说起
题目原文是:
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
例如,上图是一个7 x 3 的网格。有多少可能的路径?
说明:m 和 n 的值均不超过 100。
示例 1:
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
- 向右 -> 向右 -> 向下
- 向右 -> 向下 -> 向右
- 向下 -> 向右 -> 向右
示例 2:
输入: m = 7, n = 3
输出: 28
正向思路
我们先按照正常思路来想一下,当你处于起点时,你有两个选择,向右或者向下,除非你处于最下面一排或者最右边一列,那你只有一种选择(比如处于最下面一排,你只能往右),其他位置,你都有两种选择。
因此,我们就根据这个思路,可以写出代码:
class Solution {
public int uniquePaths(int m, int n) {
// 特殊情况:起点即终点
if (m == 1 && n == 1) {
return 1;
}
// 当前处于(1,1),终点为(m,n)
return walk(1, 1, m, n);
}
public int walk(int x, int y, int m, int n){
// 已经处于终点
if (x >= m && y >= n) {
return 0;
}
// 处于最下面一排或者最右边一列
if (x >= m || y >= n) {
return 1;
}
// 往下走,有多少种走法
int down = walk(x, y + 1, m, n);
// 往右走,有多少种走法
int right = walk(x + 1, y, m, n);
// 从当前(x,y)出发,走到(m,n),共有多少种走法
return down + right;
}
}
优化
我们考虑一下,这种写法,有没有可以优化的地方。
你们应该一眼就发现,walk
方法的第一个判断if (x >= m && y >= n)
,永远都不可能为true
,因为下一个判断if (x >= m || y >= n)
就已经是临界点情况,直接就已经有返回值,根本不可能达到x >= m && y >= n
的情况。因此,该判断可以删除。
假设我们从(1,1)的位置出发,终点是(3,3),那么到达(2,2)这个中间点的话有几种走法呢?两种,先到(1,2)再到(2,2),或者,先到(2,1)再到(2,2)。
因此,如果根据我们上面的写法,从(2,2)到终点(3,3),我们会算两次,虽然这样的思路本身是正确,但这样的情况应该是可以优化的。因为从(1,1)到(3,3),一共只有6种路径,但已经有2条是重复的路径了,那么随着m
与n
越来越大,中间点会越来越多,那么重复的路径也会越来越多。
这就是前面的选择
对于后面的选择
会有影响,即使后面的选择
相同,但由于前面的选择
不同,从而也被认为是不同的选择。
很明显,后面的选择
更加唯一,如果我们先在后面做出选择,那么就可以减少重复计算的次数。因此,我们可以试试反向思路。
反向思路
如果我们不是从起点出发,而是从终点倒退到起点开始算的话。假设终点是(3,3),它只能由(2,3)和(3,2)直接到达,(2,3)也只能由(2,2)和(1,3)直接到达,(1,3)只能由(1,2)直接到达,(1,2)只能由(1,1)直接到达,因此(1,3)只能由(1,1)直达。
我们可以得出规律:除了最左边一列和最上面一排的点,只能由起点(1,1)直达以外,其他的点(x,y)都是由(x-1,y)和(x,y-1)两个点直接到达的。
因此,根据这个思路,我们可以写出代码:
class Solution {
public int uniquePaths(int m, int n) {
int[][] result = new int[m][n];
int j;
for (int i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
if (i == 0 || j == 0) {
// 最上面一排的点和最左边一列的点,只能由(1,1)到达
result[i][j] = 1;
} else {
// 其他的点都可以由左边的点和上面的点到达
result[i][j] = result[i - 1][j] + result[i][j - 1];
}
}
}
return result[m - 1][n - 1];
}
}
其实这样的想法就已经是动态规划
的范畴了,我们看看维基上的定义
动态规划(英语:Dynamic programming,简称DP)是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。
一开始我感觉很像分治法
,因为都需要将一个大问题分解为子问题,但分治法
最终会将子问题合并,但动态规划
却不用。
优化
我们考虑一下,这种写法,有没有可以优化的地方。
首先是空间上的优化,我们一定要用二维数组吗?可以用一维数组代替吗?
答案是肯定的,因为每个点的计算只和左边与上边相邻的点有关,因此,不需要更加久远的点。
一维数组
假如只用一维数组,那么只需要存储上一排的结果,如果计算到下一排的时候,则依次替换,代码为:
class Solution {
public int uniquePaths(int m, int n) {
int[] dp = new int[m];
int j;
for(int i = 0; i < n; i++) {
for(j = 0; j < m; j++) {
if(j == 0) {
dp[j] = 1;
}
else {
// 其他的点都可以由左边的点和上面的点到达
dp[j] += dp[j-1];
}
}
}
return dp[m-1];
}
}
这样的优化,差不多就结束了。那我们是否可以从思路上进行优化呢?
组合数
因为我们只有向右或向下两种选择,而我们一共要走的路径其实是(m-n-2)
,其中有(m-1)
的路径是向右,(n-1)
的路径是向下,其实可以转变为:
从
(m-n-2)
中挑出(m-1)
,即组合数C((m-n-2), (m-1))
的值
那么我们可以写出代码:
class Solution {
public int uniquePaths(int m, int n) {
// 用double,因为计算出的数值会很大
double num = 1, denom = 1;
// 找出更小的数,这样可以减少计算次数和计算出的数值
int small = m > n ? n : m;
for (int i = 1; i <= small - 1; ++i) {
num *= m + n - 1 - i;
denom *= i;
}
return (int)(num / denom);
}
}
总结
以上就是我做这道题的一些思路和想法了,虽然题目本身不难,但可以讨论的点还是很多的,如果大家有什么疑问,欢迎在下方留言。
有兴趣的话可以关注我的公众号,说不定会有意外的惊喜。
Java面试-动态规划与组合数的更多相关文章
- Java面试 32个核心必考点完全解析
目录 课程预习 1.1 课程内容分为三个模块 1.2 换工作面临问题 1.3 课程特色 课时1:技术人职业发展路径 1.1 工程师发展路径 1.2 常见技术岗位划分 1.3 面试岗位选择 1.4 常见 ...
- Java面试知识点汇总
Java面试知识点汇总 置顶 2019年05月07日 15:36:18 温柔的谢世杰 阅读数 21623 文章标签: 面经java 更多 分类专栏: java 面试 Java面试知识汇总 版权声明 ...
- JAVA面试中问及HIBERNATE与 MYBATIS的对比,在这里做一下总结
我是一名java开发人员,hibernate以及mybatis都有过学习,在java面试中也被提及问道过,在项目实践中也应用过,现在对hibernate和mybatis做一下对比,便于大家更好的理解和 ...
- 转:最近5年133个Java面试问题列表
最近5年133个Java面试问题列表 Java 面试随着时间的改变而改变.在过去的日子里,当你知道 String 和 StringBuilder 的区别就能让你直接进入第二轮面试,但是现在问题变得越来 ...
- java面试宝典(蓝桥学院)
Java面试宝典(蓝桥学院) 回答技巧 这套面试题主要目的是帮助那些还没有java软件开发实际工作经验,而正在努力寻找java软件开发工作的学生在笔试/面试时更好地赢得好的结果.由于这套试题涉及的范围 ...
- JAVA面试精选【Java基础第一部分】
这个系列面试题主要目的是帮助你拿轻松到offer,同时还能开个好价钱.只要能够搞明白这个系列的绝大多数题目,在面试过程中,你就能轻轻松松的把面试官给忽悠了.对于那些正打算找工作JAVA软件开发工作的童 ...
- Java面试必备知识
JAVA面试必备知识 第一,谈谈final, finally, finalize的区别. 第二,Anonymous Inner Class (匿名内部类) 是否可以extends(继承)其它类,是否可 ...
- java面试和笔试大全 分类: 面试 2015-07-10 22:07 10人阅读 评论(0) 收藏
2.String是最基本的数据类型吗? 基本数据类型包括byte.int.char.long.float.double.boolean和short. java.lang.String类是final类型 ...
- 近5年133个Java面试问题列表
Java 面试随着时间的改变而改变.在过去的日子里,当你知道 String 和 StringBuilder 的区别就能让你直接进入第二轮面试,但是现在问题变得越来越高级,面试官问的问题也更深入. 在我 ...
随机推荐
- 十分钟带你看一遍ES6新特性
let , const关键字 var 看习惯了java, 看js真的是忍不住想笑,比如说这个var,它太自由了,自由到{}根本限制不住它的生命周期 js的var关键字,无论在何处声明,都会被视为声明在 ...
- kubernetes lowB安装方式
kubernetes离线安装包,仅需三步 基础环境 关闭防火墙 selinux $ systemctl stop firewalld && systemctl disable fire ...
- jQuery中的append中含有onClick的问题
在jQuery中,当append中含有onClick时,点击事件无效果.需要在append完之后再额外绑定点击事件.
- TCP/UDP对比总结
目录 1 TCP-UDP对比 2 UDP介绍 3 TCP介绍 3.1 可靠传输的原理和实现 3.1.1 可靠传输原理 3.1.2 可靠传输实现 3.2 TCP面向连接管理 3.2.1 建立连接 3.2 ...
- Java学习|多线程学习笔记
什么是线程? 可以理解为进程中独立运行的字任务. 使用多线程: 1.继承Thread类:从源码可以看到,Thread累实现了Runnable接口. 如果多次调用st ...
- JVM调优前戏之JDK命令行工具---jhat
在JDK的命令行中,一般开发人员最耳熟能详的肯定就是java,javac,javap等常用命令,不过在jdk/bin下还有许多其他的命令行工具,它们被用来监测JVM运行时的状态,下面我们来详细解读一下 ...
- CodeForces 427D Match & Catch
洛谷题目页面传送门 & CodeForces题目页面传送门 给定\(2\)个字符串\(a,b,|a|=n,|b|=m\),求最长的既在\(a\)中出现恰好\(1\)次又在\(b\)中出现恰好\ ...
- 性能测试学习第三天-----loadrunner接口测试&中文乱码处理
loadrunner 接口测试: get.post(3种参数格式).cookie及token处理.加密接口.webservice.socket.文件上传接口.文件下载接口 & 中 ...
- Laravel框架内实现api文档:markdown转为html
前后端分离的工作模式于今是非常流行了,前后端工作的对接,就离开不了API文档的辅助. 根据自己以往的工作经历,以及了解的一些资讯,API文档的建立,无非以下几种方式: 1. word文档模板 2. 第 ...
- python的魔术方法大全
在Python中,所有以“__”双下划线包起来的方法,都统称为“Magic Method”(魔术方法),例如类的初始化方法 __init__ ,Python中所有的魔术方法均在官方文档中有相应描述,这 ...