原文链接:http://www.one2know.cn/nlp5/

  • NLTK内置词性标注器

    用nltk.pos_tag()函数进行词性标注
import nltk
nltk.download('averaged_perceptron_tagger') simpleSentence = 'Bangalore is the capital of Karnataka.' # 分词
wordsInSentence = nltk.word_tokenize(simpleSentence)
print(wordsInSentence) # 词性标注
partsOfSpeechTags = nltk.pos_tag(wordsInSentence)
print(partsOfSpeechTags)

输出:

['Bangalore', 'is', 'the', 'capital', 'of', 'Karnataka', '.']
[('Bangalore', 'NNP'), ('is', 'VBZ'), ('the', 'DT'), ('capital', 'NN'), ('of', 'IN'), ('Karnataka', 'NNP'), ('.', '.')]
  • 自己的词性标注器
import nltk

# 默认:不认识的都标成NN
def learnDefaultTagger(simpleSentence):
wordsInSentence = nltk.word_tokenize(simpleSentence)
tagger = nltk.DefaultTagger('NN')
posEnabledTags = tagger.tag(wordsInSentence)
print(posEnabledTags) # 正则表达式标注
def learnRETagger(simpleSentence):
# 元组列表,r不能省哦
customPatterns =[
(r'.*ing$','ADJECTIVE'),
(r'.*ly$','ADVERB'),
(r'.*ion$','NOUN'),
(r'(.*ate|.*en|is)$','VERB'),
(r'^an$','INDEFINITE-ARTICLE'),
(r'^(with|on|at)$','PREPOSITION'),
(r'^[0-9]*$','NUMBER'),
(r'.*$',None),
]
tagger = nltk.RegexpTagger(customPatterns)
wordsInSentencs = nltk.word_tokenize(simpleSentence)
posEnabledTags =tagger.tag(wordsInSentencs)
print(posEnabledTags) # 字典标注
def learnLookupTagger(simpleSentence):
mapping = {
'.':'.','place':'NN','on':'IN','earth':'NN','Mysore':'NNP',
'is':'VBZ','an':'DT','amazing':'JJ',
}
tagger = nltk.UnigramTagger(model=mapping)
wordsInSentencs = nltk.word_tokenize(simpleSentence)
posEnabledTags = tagger.tag(wordsInSentencs)
print(posEnabledTags) if __name__ == "__main__":
testSentence = 'Mysore is an amazing place on earth. I have visited Mysore 10 times.'
learnDefaultTagger(testSentence)
learnRETagger(testSentence)
learnLookupTagger(testSentence)

输出:

[('Mysore', 'NN'), ('is', 'NN'), ('an', 'NN'), ('amazing', 'NN'), ('place', 'NN'), ('on', 'NN'), ('earth', 'NN'), ('.', 'NN'), ('I', 'NN'), ('have', 'NN'), ('visited', 'NN'), ('Mysore', 'NN'), ('10', 'NN'), ('times', 'NN'), ('.', 'NN')]
[('Mysore', None), ('is', 'VERB'), ('an', 'INDEFINITE-ARTICLE'), ('amazing', 'ADJECTIVE'), ('place', None), ('on', 'PREPOSITION'), ('earth', None), ('.', None), ('I', None), ('have', None), ('visited', None), ('Mysore', None), ('10', 'NUMBER'), ('times', None), ('.', None)]
[('Mysore', 'NNP'), ('is', 'VBZ'), ('an', 'DT'), ('amazing', 'JJ'), ('place', 'NN'), ('on', 'IN'), ('earth', 'NN'), ('.', '.'), ('I', None), ('have', None), ('visited', None), ('Mysore', 'NNP'), ('10', None), ('times', None), ('.', '.')]
  • 训练自己的词性标注器
import nltk
import pickle # 训练集
def sampleData():
return [
'Bangalore is the capital of Karnataka.',
'Steve Jobs was the CEO of Apple.',
'iPhone was Invented by Apple.',
'Books can be purchased in Market.',
] # 逐句分词,得到词性,将训练集的词和词性放到字典里
def buildDictionary():
dictionary = {}
for sent in sampleData():
partsOfSpeechTags = nltk.pos_tag(nltk.word_tokenize(sent))
for tag in partsOfSpeechTags:
value = tag[0]
pos = tag[1]
dictionary[value] = pos
return dictionary def saveMyTagger(tagger,fileName):
fileHandle = open(fileName,'wb')
pickle.dump(tagger,fileHandle) # 写入二进制
fileHandle.close() # 用学习的字典得到tagger
def saveMyTraining(fileName):
tagger = nltk.UnigramTagger(model=buildDictionary())
saveMyTagger(tagger,fileName) # 读取自己的模型
def loadMyTagger(fileName):
return pickle.load(open(fileName,'rb')) sentence = 'IPhone is purchased by Steve Jobs in Bangalore Market.'
fileName = 'myTagger.pickle' saveMyTraining(fileName) myTagger = loadMyTagger(fileName) print(myTagger.tag(nltk.word_tokenize(sentence)))

输出:

[('IPhone', None), ('is', 'VBZ'), ('purchased', 'VBN'), ('by', 'IN'), ('Steve', 'NNP'), ('Jobs', 'NNP'), ('in', 'IN'), ('Bangalore', 'NNP'), ('Market', 'NNP'), ('.', '.')]
  • 编写自己的文法

    上下文无关文法:

    1.开始符号/标记

    2.终结符号集合

    3.非终结符号集合

    4.定义开始符号和规则(产生式)

    5.语言是英文时,a-z是符号/标记/字母

    6.语言是数字时,0-9是符号/标记/字母

    产生式是用巴克斯-诺尔(BNF)范式写的
import nltk
import string
from nltk.parse.generate import generate
import sys # 定义一个起始符号为ROOT的文法
productions = [
'ROOT -> WORD',
'WORD -> \' \'',
'WORD -> NUMBER LETTER',
'WORD -> LETTER NUMBER',
] # 添加新的生成方式 'NUMBER -> 0|1|2|3'
digits = list(string.digits) # str格式的数字
for digit in digits[:4]:
productions.append('NUMBER -> \'{w}\''.format(w=digit)) # 添加新的生成方式 'LETTER -> a|b|c|d'
letters ="' | '".join(list(string.ascii_lowercase)[:4])
productions.append('LETTER -> \'{w}\''.format(w=letters)) # 将文法分行存于grammarString
grammarString = '\n'.join(productions) # 创建文法对象,并查看之
grammar = nltk.CFG.fromstring(grammarString)
print(grammar) # 读取语法树 最多个数:5 最多层数:4
for sentence in generate(grammar,n=5,depth=4):
palindrome = ''.join(sentence).replace(' ','')
print('Generated Word: {} , Size : {}'.format(palindrome,len(palindrome)))
  • 输出
Grammar with 12 productions (start state = ROOT)
ROOT -> WORD
WORD -> ' '
WORD -> NUMBER LETTER
WORD -> LETTER NUMBER
NUMBER -> '0'
NUMBER -> '1'
NUMBER -> '2'
NUMBER -> '3'
LETTER -> 'a'
LETTER -> 'b'
LETTER -> 'c'
LETTER -> 'd'
Generated Word: , Size : 0
Generated Word: 0a , Size : 2
Generated Word: 0b , Size : 2
Generated Word: 0c , Size : 2
Generated Word: 0d , Size : 2
  • 基于概率的上下文无关文法

    所有非终结符号(左侧)的概率之和等于1
描述 内容
开始符号 ROOT
非终结符号 WORD,P1,P2,P3,P4
终结符号 'A','B','C','D','E','F','G','H'
import nltk
from nltk.parse.generate import generate productions = [
"ROOT -> WORD [1.0]",
"WORD -> P1 [0.25]",
"WORD -> P1 P2 [0.25]",
"WORD -> P1 P2 P3 [0.25]",
"WORD -> P1 P2 P3 P4 [0.25]",
"P1 -> 'A' [1.0]",
"P2 -> 'B' [0.5]",
"P2 -> 'C' [0.5]",
"P3 -> 'D' [0.3]",
"P3 -> 'E' [0.3]",
"P3 -> 'F' [0.4]",
"P4 -> 'G' [0.9]",
"P4 -> 'H' [0.1]",
]
grammarString = '\n'.join(productions) # 创建grammar对象
grammar = nltk.PCFG.fromstring(grammarString)
print(grammar) for sentence in generate(grammar,n=5,depth=4):
palindrome = ''.join(sentence).replace(' ','')
print('String : {} , Size : {}'.format(palindrome,len(palindrome)))

输出:

Grammar with 13 productions (start state = ROOT)
ROOT -> WORD [1.0]
WORD -> P1 [0.25]
WORD -> P1 P2 [0.25]
WORD -> P1 P2 P3 [0.25]
WORD -> P1 P2 P3 P4 [0.25]
P1 -> 'A' [1.0]
P2 -> 'B' [0.5]
P2 -> 'C' [0.5]
P3 -> 'D' [0.3]
P3 -> 'E' [0.3]
P3 -> 'F' [0.4]
P4 -> 'G' [0.9]
P4 -> 'H' [0.1]
String : A , Size : 1
String : AB , Size : 2
String : AC , Size : 2
String : ABD , Size : 3
String : ABE , Size : 3
  • 编写递归的上下文无关文法

    以递归方法生成回文为例,回文:比如01语言系统的 010010 等
# 生成偶数回文数字
import nltk
import string
from nltk.parse.generate import generate productions = [
'ROOT -> WORD',
"WORD -> ' '",
] alphabets = list(string.digits) for alphabet in alphabets:
productions.append("WORD -> '{w}' WORD '{w}'".format(w=alphabet)) grammarString = '\n'.join(productions) grammar = nltk.CFG.fromstring(grammarString)
print(grammar) for sentence in generate(grammar,n=5,depth=5):
palindrome = ''.join(sentence).replace(' ','')
print('Palindrome : {} , Size : {}'.format(palindrome,len(palindrome)))

输出:

Grammar with 12 productions (start state = ROOT)
ROOT -> WORD
WORD -> ' '
WORD -> '0' WORD '0'
WORD -> '1' WORD '1'
WORD -> '2' WORD '2'
WORD -> '3' WORD '3'
WORD -> '4' WORD '4'
WORD -> '5' WORD '5'
WORD -> '6' WORD '6'
WORD -> '7' WORD '7'
WORD -> '8' WORD '8'
WORD -> '9' WORD '9'
Palindrome : , Size : 0
Palindrome : 00 , Size : 2
Palindrome : 0000 , Size : 4
Palindrome : 0110 , Size : 4
Palindrome : 0220 , Size : 4

NLP(五) 词性标注和文法的更多相关文章

  1. HanLP使用教程——NLP初体验

    话接上篇NLP的学习坑 自然语言处理(NLP)--简介 ,使用HanLP进行分词标注处词性. HanLP使用简介 HanLP是一系列模型与算法组成的NLP工具包,目标是普及自然语言处理在生产环境中的应 ...

  2. 会话机器人Chatbot的相关资料

    Chatbot简介 竹间智能简仁贤:打破千篇一律的聊天机器人 | Chatbot的潮流 重点关注其中关于情感会话机器人的介绍 当你对我不满的时候我应该怎么应对,当你无聊,跟我说你很烦的时候,我应该怎么 ...

  3. NLP+句法结构(三)︱中文句法结构(CIPS2016、依存句法、文法)

    摘录自:CIPS2016 中文信息处理报告<第一章 词法和句法分析研究进展.现状及趋势>P8 -P11 CIPS2016> 中文信息处理报告下载链接:http://cips-uplo ...

  4. NLP+语篇分析(五)︱中文语篇分析研究现状(CIPS2016)

    摘录自:CIPS2016 中文信息处理报告<第三章 语篇分析研究进展.现状及趋势>P21 CIPS2016 中文信息处理报告下载链接:http://cips-upload.bj.bcebo ...

  5. 【NLP】条件随机场知识扩展延伸(五)

    条件随机场知识扩展延伸 作者:白宁超 2016年8月3日19:47:55 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应 ...

  6. 转:NLP+句法结构(三)︱中文句法结构(CIPS2016、依存句法、文法)

    NLP+句法结构(三)︱中文句法结构(CIPS2016.依存句法.文法)转自:https://www.cnblogs.com/maohai/p/6453389.html 摘录自:CIPS2016 中文 ...

  7. nlp词性标注

    nlp词性标注 与分词函数不同,jieba库和pyltp库词性标注函数上形式相差极大. jieba的词性标注函数与分词函数相近,jieba.posseg.cut(sentence,HMM=True)函 ...

  8. NLP自然语言处理 jieba中文分词,关键词提取,词性标注,并行分词,起止位置,文本挖掘,NLP WordEmbedding的概念和实现

    1. NLP 走近自然语言处理 概念 Natural Language Processing/Understanding,自然语言处理/理解 日常对话.办公写作.上网浏览 希望机器能像人一样去理解,以 ...

  9. NLP(十五)让模型来告诉你文本中的时间

    背景介绍   在文章NLP入门(十一)从文本中提取时间 中,笔者演示了如何利用分词.词性标注的方法从文本中获取时间.当时的想法比较简单快捷,只是利用了词性标注这个功能而已,因此,在某些地方,时间的识别 ...

随机推荐

  1. Java匹马行天下之JavaWeb核心技术——JSP(续一)

      十二.JSP表单处理 我们在浏览网页的时候,经常需要向服务器提交信息,并让后台程序处理.浏览器中使用 GET 和 POST 方法向服务器提交数据. GET 方法 GET方法将请求的编码信息添加在网 ...

  2. ubuntu 下常用的mysql 命令

    一.mysql服务操作  0.查看数据库版本 sql-> status;  1.net start mysql //启动mysql服务  2.net stop mysql //停止mysql服务 ...

  3. codeforces 340 A. The Wall

    水水的一道题,只需要找xy的最小公倍数,然后找a b区间有多少个可以被xy的最小公倍数整除的数,就是答案. //============================================ ...

  4. Model设计中常见的技巧和注意事项

    verbose_name 可以作为第一个参数传入,书写更加工整和有序: name = models.CharField('类别名',default="", max_length=3 ...

  5. 树莓派 + Windows IoT Core 搭建环境监控系统

    前言:Windows IoT 是微软为嵌入式开发板设计的一种物联网操作系统,运行Windows UWP(C# 开发),可以设计出丰富的交互界面,驱动GPIO,连接一些传感器做有意思的事,本文详细介绍如 ...

  6. scrapyd schedule.json setting 传入多个值

    使用案例: import requests adder='http://127.0.0.1:6800' data = { 'project':'v1', 'version':'12379', 'set ...

  7. java常见面试题目(二)

    部分没有答案可以自行百度. 1.myeclipse与eclipse的区别. 2.说说对maven或者SVN的理解. 3.类的加载过程 (创建对象的过程)  1)子父类里静态属性 赋上默认初始值 如果有 ...

  8. 【Java例题】2.1复数类

    1.定义复数类,包括实部和虚部变量.构造方法. 加减乘除方法.求绝对值方法和显示实部.虚部值的方法. 然后编写一个主类,在其主方法中通过定义两个复数对象来 显示每一个复数的实部值.虚部值和绝对值, 显 ...

  9. cogs 1254. 最难的任务 Dijkstra + 重边处理

    1254. 最难的任务 ★   输入文件:hardest.in   输出文件:hardest.out   简单对比时间限制:1 s   内存限制:128 MB [题目描述] 这个真的很难.算出 123 ...

  10. 非常实用的select下拉框-Select2.js

    在Web开发中,Select下拉框是常用的输入组件.由于原生的Select几乎很难通过CSS样式控制.一些好看的Select下拉框就只能通过模拟来实现.PHP程序员雷雪松给大家推荐一筐款不错的Sele ...